

July 15, 2020

1:500
0 5 10 20 Metres

DISCLAIMER

The Masterton, Carterton, and South Wairarapa District Councils accept no responsibility for actions or projects undertaken or loss or damages incurred by any individuals or company, or agency, using all or any of the information presented on this map. The Councils do not provide interpretation of this information or advice on how to interpret or utilise this information. Your own independent and appropriate professional advice should be sought. The information displayed on this map may contain errors or omissions or may not have the spatial accuracy required for some purposes.

Te Kāhui
Whaihangā
New Zealand
Institute of
Architects

Building Code Clause(s) B1

PRODUCER STATEMENT – PS1 – DESIGN

ISSUED BY: Structural Concepts Limited (Design Firm)

TO: Matt Patrick (Owner/Developer)

TO BE SUPPLIED TO: Carterton District Council (Building Consent Authority)

IN RESPECT OF: Storage Shed (Description of Building Work)

AT: 395 Te Kopi Road (Address)

Town/City: LOT DP SO
(Address)

We have been engaged by the owner/developer referred to above to provide:

Structural Engineering

..... (Extent of Engagement)

services in respect of the requirements of Clause(s). B1 of the Building Code for:

All or Part only (as specified in the attachment to this statement), of the proposed building work.

The design carried out by us has been prepared in accordance with:

Compliance Documents issued by the Ministry of Business, Innovation & Employment. B1/VM1 B1/VM4 or
(verification method/acceptable solution)

Alternative solution as per the attached schedule.....

The proposed building work covered by this producer statement is described on the drawings titled:

Timberspan Strong Timber Buildings and numbered SCL Ref 2366-7905 Sheets 1 to 7
together with the specification, and other documents set out in the schedule attached to this statement.

On behalf of the Design Firm, and subject to:

(i) Site verification of the following design assumptions 100kPa unfactored ULS bearing capacity
(ii) All proprietary products meeting their performance specification requirements;

I believe on reasonable grounds that a) the building, if constructed in accordance with the drawings, specifications, and other documents provided or listed in the attached schedule, will comply with the relevant provisions of the Building Code and that b), the persons who have undertaken the design have the necessary competency to do so. I also recommend the following level of construction monitoring/observation:

CM1 CM2 CM3 CM4 CM5 (Engineering Categories) or as per agreement with owner/developer (Architectural)

I, Arthur Budvietas am: CPEng 165555 # Reg Arch #
(Name of Design Professional)

I am a member of: Engineering New Zealand NZIA and hold the following qualifications: BE(Civil), MIPENZ, CPEng
The Design Firm issuing this statement holds a current policy of Professional Indemnity Insurance no less than \$200,000*.
The Design Firm is a member of ACENZ:

SIGNED BY: Arthur Budvietas (Signature)
(Name of Design Professional)

ON BEHALF OF: Structural Concepts Limited Date 17/6/2020
(Design Firm)

Note: This statement shall only be relied upon by the Building Consent Authority named above. Liability under this statement accrues to the Design Firm only. The total maximum amount of damages payable arising from this statement and all other statements provided to the Building Consent Authority in relation to this building work, whether in contract, tort or otherwise (including negligence), is limited to the sum of \$200,000.*

This form is to accompany **Form 2 of the Building (Forms) Regulations 2004** for the application of a Building Consent.
THIS FORM AND ITS CONDITIONS ARE COPYRIGHT TO ACENZ, ENGINEERING NEW ZEALAND AND NZIA

IPENZ PRODUCER STATEMENT ATTACHED SHEET

Foundations, Cantilever Poles, Bracing, Girts, Footings, Rafters and Purlins

Relevant Standards

- B1/VM1
- AS/NZS 1170.0
- AS/NZS 1170.1
- AS/NZS 1170.2
- AS/NZS 1170.3
- NZS 1170.5
- NZS 3101
- NZS 3603
- NZS 3404
- B1/VM4 Importance Level 1

The proposed building work covered by this producer statement is described on the drawing titled:

Timberspan Strong Timber Building and numbered Structural Concepts
Limited sheet 1-7

GUIDANCE ON USE OF PRODUCER STATEMENTS

Producer statements were first introduced with the Building Act 1991. The producer statements were developed by a combined task committee consisting of members of the New Zealand Institute of Architects, Institution of Professional engineers New Zealand, Association of Consulting Engineers New Zealand in consultation with the Building Officials Institute of New Zealand. The original suit of producer statements has been revised at the date of this form as a result of enactment of the Building Act (2004) by these organisations to ensure standard use within the industry.

The producer statement system is intended to provide Building Consent Authorities (BCAs) with reasonable grounds for the issue of a Building Consent or a Code Compliance Certificate, without having to duplicate design or construction checking undertaken by others.

PS1 Design Intended for use by a suitably qualified independent design professional in circumstances where the BCA accepts a producer statement for establishing reasonable grounds to issue a Building Consent;

PS2 Design Review Intended for use by a suitably qualified independent design professional where the BCA accepts an independent design professional's review as the basis for establishing reasonable grounds to issue a Building Consent;

PS3 Construction Forms commonly used as a certificate of completion of building work are Schedule 6 of NZS 3910:2013 or Schedules E1/E2 of NZIA's SCC 2011²

PS4 Construction Review Intended for use by a suitably qualified independent design professional who undertakes construction monitoring of the building works where the BCA requests a producer statement prior to issuing a Code Compliance Certificate.

This must be accompanied by a statement of completion of building work (Schedule 6).

The following guidelines are provided by ACENZ, IPENZ and NZIA to interpret the Producer Statement.

Competence of Design Professional

This statement is made by a Design Firm that has undertaken a contract of services for the services named, and is signed by a person authorised by that firm to verify the processes within the firm and competence of its designers.

A competent design professional will have a professional qualification and proven current competence through registration on a national competence based register, either as a Chartered Professional Engineer (CPEng) or a Registered Architect.

Membership of a professional body, such as the Institution of Professional Engineers New Zealand (IPENZ) or the New Zealand Institute of Architects (NZIA), provides additional assurance of the designer's standing within the profession. If the design firm is a member of the Association of Consulting Engineers New Zealand (ACENZ), this provides additional assurance about the standing of the firm.

Persons or firms meeting these criteria satisfy the term "suitably qualified independent design professional".

*Professional Indemnity Insurance

As part of membership requirements, ACENZ requires all member firms to hold Professional Indemnity Insurance to a minimum level.

The PI Insurance minimum stated on the front of this form reflects standard, small projects. If the parties deem this inappropriate for large projects the minimum may be up to \$500,000.

Client: Tumu Timbers - Matt Patrick

Project: Garage/lean to

Ref/ON: HA108050

SCL Ref: 2366-7905

SPECIFICATION NOTES

CONTENTS

- ⇒ Scope
- ⇒ Loads
- ⇒ Site Soils
- ⇒ Concrete
- ⇒ Timber
- ⇒ Cladding
- ⇒ Hardware
- ⇒ Reference Documents
- ⇒ Design Statement

1 **Scope**

It should be noted that this is a material specification only and that in regard to workmanship, accuracy and quality the requirements of the New Zealand Building Code and appropriate New Zealand Standards apply.

2 **Loads**

The building is designed to the following criteria:

Loadings in accordance with ANZS1170 and a "Medium/High" wind speed in accordance with NZS 3604. Importance level type 1 (ANZS1170) building, therefore non residential.

3 **Site Soils**

The soil must be "Good Ground" as defined in NZS3604. This shall have a minimum ultimate bearing capacity of 100 Kpa. This needs to be confirmed during construction.

If there is any doubt as to the adequacy of the subsoils a suitably qualified person must be consulted and his/her instructions implemented prior to continuing construction.

Footing depth shall be taken from natural ground level and excludes any uncertified fill.

4 **Concrete**

All concrete shall develop minimum 28 day cylinder strength of 25MPa.

5 **Timber**

All timber used is to be in accordance with the 50 years durability performance of NZS 3602 and at least of the following types and qualities:-

Structural grade SG8 Radiata Pine or Douglas Fir:

All round timber to be High density. Treated H5.

All sawn timber treated H3.2

Grading is to be NZS 3631 or NZS 3618.

Sizes referred to in all documents are call dimensions to NZS 3601.

For allowable moisture content refer Table 4. NZS 3602

6 **Cladding**

Supply and fit 0.40mm "Zincalume" or "Colorsteel" corrugated profile cladding to the new building, all as shown in accordance with the manufacturer's specification.

Provide and fix 0.55 "Zincalume" or "Colorsteel" flashings. Flash the ridge, parapets, bargeboards, gutters, etc. all as shown and as required to properly finish and weatherproof all roofs and metal clad walls. Flash all sides of all doors, building junctions, etc. to completely weatherproof the detail. Take care to only use like metals in contact or close proximity.

7 **Hardware**

For proprietary fixings, brackets etc use Pryda products or equivalent. Consult engineer if use of another manufacturers product, other than Pryda is desired.

Grade 304 or 316 stainless steel fixings and fasteners shall be used except in "sheltered" locations (open to the air, but not rain washed), in zones B and C. In those situations the fixings may comprise galvanised steel. In zone D use Grade 304 or 316 stainless steel fixings and fastenings. In geothermal areas all fixings require SED, as described in section 4 of NZS3604.

8 **Reference Documents**

Throughout this specification, reference is made to various New Zealand Building Code Compliance Documents, acceptable solutions and verification methods for criteria and/or methods used to establish compliance with the New Zealand Building Code. Reference is made to various New Zealand standards. The latest edition of these standards (including amendment and provisional editions) at the date of this specification applies.

It is the responsibility of the contractor to be familiar with the materials and expert in the techniques quoted in these publications.

Documents cited both directly and within cited publications are deemed to form part of this specification.

DESIGN STATEMENT

This pole shed is one of many that has been designed for Tumu Timbers and is part of an Excel spreadsheet program. They have been specifically designed using the loadings code NZS1170 and the timber code NZS3603. They therefore comply with the building code requirements B1/VM1.

The pole sheds have been designed using importance category level 1 as defined in NZS1170, with a 50 year design working life. Importance level 1 is defined as:-

Farm buildings, isolated structures, towers in rural situations, fences, masts and in-ground swimming pools. "Structures presenting a low degree of hazard to life and other property".

Attached to this sheet should be drawings, details sheet, design sheet and PS1.

The **details sheet** states the dimensions of the shed. It also states the assumed soil type and wind zone. The wind zones and soil types may have been assumed by the user of the spreadsheet program, there are four soil types:- 100kPa Clay (equal to NZS3604), 50kpa (1/2 NZS3604), medium dense gravel or sand and Very dense gravel or sand.

There are two wind zones:- Category 2 and Category 3, these do not relate to NZS3604 wind zones. NZS1170 definition of wind zones:- Category 2 = Water surfaces, open terrain, grassland with few or well scattered obstructions which have a height of 1.5m - 10m.

Category 3 = Terrain with numerous closely spaced obstructions 3m -5m high such as areas of suburban housing or level wooded country.

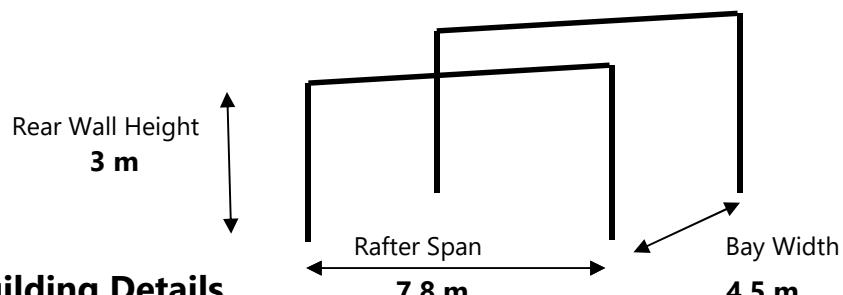
These pole shed designs are based on a Topographical multiplier of 1.0, which means they do not take into account:- Hills, cliffs or escarpments greater than 25m high, valleys where wind acceleration is known to exist, sites greater than 500m in elevation and lee zone affects (which are the same zones stated in NZS3604). This does not exclude "rolling hill country" provided there are no known wind acceleration affects.

Although the seismic load case has been included for the sake of completeness, it is not governing the design. A dynamic frequency analysis has been carried out on the worst case sheds using:- Hazard factor 0.45, Near Fault Factor 1, Soil type D. Deep or soft soil. and at no point does it govern the design of the sheds.

The sheds have not been specifically design for snow load, however they are capable of a snow load to a maximum elevation of 470m, in snow region N1 which is the Southern part of the North Island.

All timber used in the pole sheds complies with the latest stress grades in NZS3603, i.e MSG8, VSG8, MSG10, VSG10 depending on shed type, all poles are based on normal outer zone density of 350 kg/m³. All sizes are on the **design sheet**. i.e Rafter, purlin, Pole size, embedment depth, hole diameter etc.

Building Summary Sheet


Project: **Garage/lean to**
Project Address: **395 Te Kopi Road, Masterton**

Local Authority : **Masterton District Council**

Building Use: **Garage/Storage**

TIMBER SPAN
STRONG TIMBER BUILDINGS

Ref/ON: **HA108050**
Date: **05/08/19**

Basic Building Details

Rafter span (m) 7.8

Building Length (m) 13.5

Rear (Low) wall height (m) 3

Front wall height (m) 3.82

Bay width (m) 4.5

Number of bays 3

Soil type Clay 100Kpa

Altitude <400 m

Wind Zone REGION A7

Wind - Topography - Grassland T2
- OUTSIDE Lee Zone

Cladding Choice - Trimrib Coloursteel Finish

Client: **Tumu Timbers - Matt Patrick**
Project: **Garage/lean to**

SCL Ref: **2366-7905**
Ref: **HA108050**
Date: **5/8/19**
BY: **GN**

CARTERTON DISTRICT COUNCIL - APPROVED B/CNO. 200188 - DATE: 6/08/2020

Client: Tumu Timbers

Owner: Matt Patrick

**Project: Garage/lean to
395 Te Kopi Road, Masterton**

Ref: HA108050
SCL Ref: 2366-7905
Date: 5 August 2019

CALCULATIONS

BY: GARRY NEWTON
BE (Civil) , MIPENZ, CPEng, IntPE(NZ)

REVIEWED BY: ARTHUR BUDVIETAS
BE (Civil) , MIPENZ, CPEng, IntPE(NZ)

CONTENTS:

Sheet

- 2 Design Features Summary
- 4 Gravity Loads
- 5 Snow Loads
- 6 Wind Loads
- 8 Seismic Loads
- 10 Rafter Design
- 11 Main Poles
- 12 Main Pole Foundation
- 14 Purlins
- 15 End Poles
- 16 Side Poles
- 17 Side Girts
- 18 End Girts
- 19 Roof Bracing
- 20 Rafter to Pole Joint

SCL Ref: **2366-7905**

 Ref: **HA108050**

 Date: **5/8/19**

 BY: **GN**

 Client: **Tumu Timbers - Matt Patrick**
 Project: **Garage/lean to**

 Subject: **Design Features Summary**

Sheet No.:	2
------------	----------

Ref:

Design

Output

Scope

In general terms, the scope of work is as follows:

Erect a timber building constructed of timber purlins on timber rafters on cantilever poles. The building is to be importance level 1.

Means of compliance

The following standards have been used:

- BiVM1
- BiVM4
- AS/NZS 1170.0:2002
- AS/NZS 1170.1:2002
- AS/NZS 1170.2:2011
- AS/NZS 1170.3:2002
- NZS 1170.5:2004
- NZS 3101:2006
- NZS 3602:2003
- NZS 3603:1993
- NZS 3404:1997

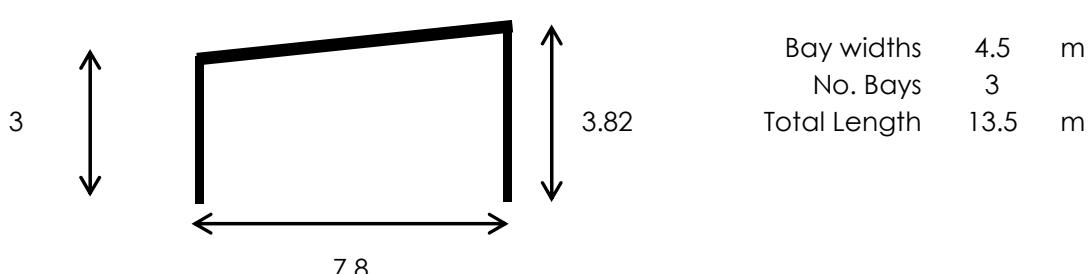
General

Chosen Design Life 50 years

Chosen Importance Level 1

Annual Probability of exceedance - Ultimate 1/100 Wind and EQ

Annual Probability of exceedance - Service 1/50 Snow


Not Applicable

Soils

It is assumed that soils will meet the conditions of NZS3604 for good ground of 300 kPa.

Reduction factors of 0.5 is to be used in design for bearing and 0.6 for cantilever action.

General Building Dimensions

SCL Ref: **2366-7905**

 Ref: **HA108050**

 Date: **5/8/19**

 BY: **GN**

 Client: **Tumu Timbers - Matt Patrick**
 Project: **Garage/lean to**

 Subject: **Design Features Summary**

Sheet No.:	3
------------	----------

Ref:

Design

Output

DESIGN LOADS

Vertical loads

Gravity

All Dead and Live loads are listed on the gravity loads sheet 4.

Snow

Region

Altitude < 400 m
 Design Snow Load S 0.25 kPa

Lateral Loads

Wind

Wind Zone

Terrain Category	2
Hill Shape Multiplier	1.160
Lee Zone Multiplier	1.2
Site wind speed	43.28 Ult (m/s)
Site wind pressure	1.12 kPa

Seismic loads

Analysis methodology

The seismic analysis has been completed in accordance with NZS 1170.5:2004. Design Spectra are in accordance with NZS 1170.5:2004 for site sub soil class C. Analysis has been completed using the Equivalent Static Method for bracing.

Across the building

Structural ductility factor (Ultimate)	μ	1.00
Structural Performance factor (Ultimate)	Sp	1.00

Along the building

Structural ductility factor (Ultimate)	μ	1.00
Structural Performance factor (Ultimate)	Sp	1.00

Load Paths

Gravity structure

Load paths:

Roofing → Purlins → Rafters → Poles → Foundations

Lateral load resisting structure

Across the building

Roof/Purlins → Rafters → Poles → Foundations

Along the building

Roof/Purlins → Roof → Poles → Foundations
 Bracing

Client: **Tumu Timbers - Matt Patrick**
 Project: **Garage/lean to**

Subject: **Gravity Loads**

Sheet No.:	4
------------	----------

CARTERTON DISTRICT COUNCIL - APPROVED B/CNO. 200188 - DATE: 6/08/2020

Ref:	Design	Output																																														
	<p>Dead Loads</p> <table> <thead> <tr> <th></th> <th>Roof without Rafter</th> <th>Wall without Pole</th> </tr> </thead> <tbody> <tr> <td>roofing</td> <td>0.05</td> <td>Cladding</td> <td>0.05</td> </tr> <tr> <td>purlins</td> <td>0.06</td> <td>Girts</td> <td>0.04</td> </tr> <tr> <td>misc</td> <td>0.01</td> <td>misc</td> <td>0.01</td> </tr> <tr> <td></td> <td>0.12 kPa</td> <td></td> <td>0.1 kPa</td> </tr> </tbody> </table> <table> <thead> <tr> <th></th> <th>Roof with Rafter</th> <th>Wall with Pole</th> </tr> </thead> <tbody> <tr> <td>roofing</td> <td>0.05</td> <td>Cladding</td> <td>0.05</td> </tr> <tr> <td>purlins</td> <td>0.06</td> <td>Girts</td> <td>0.06</td> </tr> <tr> <td>misc</td> <td>0.01</td> <td>misc</td> <td>0.01</td> </tr> <tr> <td>rafter</td> <td>0.04</td> <td>pole</td> <td>0.03</td> </tr> <tr> <td></td> <td>0.16 kPa</td> <td></td> <td>0.15 kPa</td> </tr> </tbody> </table> <p>Live Loads</p> <table> <tbody> <tr> <td>Roof UDL</td> <td>0.25 kPa</td> </tr> <tr> <td>Roof Point Load</td> <td>1.1 kN</td> </tr> </tbody> </table>		Roof without Rafter	Wall without Pole	roofing	0.05	Cladding	0.05	purlins	0.06	Girts	0.04	misc	0.01	misc	0.01		0.12 kPa		0.1 kPa		Roof with Rafter	Wall with Pole	roofing	0.05	Cladding	0.05	purlins	0.06	Girts	0.06	misc	0.01	misc	0.01	rafter	0.04	pole	0.03		0.16 kPa		0.15 kPa	Roof UDL	0.25 kPa	Roof Point Load	1.1 kN	
	Roof without Rafter	Wall without Pole																																														
roofing	0.05	Cladding	0.05																																													
purlins	0.06	Girts	0.04																																													
misc	0.01	misc	0.01																																													
	0.12 kPa		0.1 kPa																																													
	Roof with Rafter	Wall with Pole																																														
roofing	0.05	Cladding	0.05																																													
purlins	0.06	Girts	0.06																																													
misc	0.01	misc	0.01																																													
rafter	0.04	pole	0.03																																													
	0.16 kPa		0.15 kPa																																													
Roof UDL	0.25 kPa																																															
Roof Point Load	1.1 kN																																															

SCL Ref: **2366-7905**

 Ref: **HA108050**

 Date: **5/8/19**

 BY: **GN**

 Client: **Tumu Timbers - Matt Patrick**
 Project: **Garage/lean to**

 Subject: **Snow Loads**

CARTERTON DISTRICT COUNCIL - APPROVED B/CNO. 200188 - DATE: 6/08/2020

Ref:	Design	Output		
	<u>Snow Loads</u> Maximum elevation of site ho 400 m Snow Region N1 <u>Southern, North Island</u> Altitude region Sub-Alpine Design life of building 50 Years Importance Level 1 Farm building, isolated structures, towers in rural situations. Fences, masts, walls, in-ground swimming pools. Probability of Exceedance 1/50 Probability Factor kp 1.00 Average weight of snow γ 2.9 kN/m ³ Characteristic value of snow on the ground sg 0.360 Exposure reduction factor Ce 1.0 Pitch of roof 6 Degrees Shape Coefficients (Balanced snow load) Design snow load S 0.25 Kpa			

SCL Ref: **2366-7905**

 Ref: **HA108050**

 Date: **5/8/19**

 BY: **GN**

 Client: **Tumu Timbers - Matt Patrick**
 Project: **Garage/lean to**

 Subject: **Wind Loads**

Sheet No.:	6
------------	----------

CARTERTON DISTRICT COUNCIL - APPROVED B/CNO. 200188 - DATE: 6/08/2020

Wind Loads
Wind Speed Assessment

Design Height	h1	3.41	m
Length of building		13.50	m
Width of building		7.80	m
Roof pitch		6.0	degrees
Wind Region		A7	
		<u>Ultimate</u>	
Annual Probability of exceedance (inverse)		100	
Regional Wind Speed	Vr	41.0	m/s
Wind directional multiplier (Any direction)	Md	1.0	
Terrain Category		2	
Shielding multiplier	Ms	1.0	
Hill Slope	not greater than	6	degrees
Hill Shape Multiplier is	Mh	1.16	
Lee Zone multiplier	Mt	1.00	
Topographic multiplier	Mt	1.16	

Terrain / height multipliers for gust wind speeds

0.83

The site wind speed $V_{sit,\beta}$ for heights above ground level

$$V_r \times M_d \times (M_{zcat} \times M_s \times M_t) = V_{sit,\beta} \quad \frac{U_{lt} \text{ (m/s)}}{43.28}$$

The site wind pressure for general purposes is:

$$(.5 Q_{air}) [V_{sit,b}]^2 = q(z) = \begin{array}{ll} 1.12 & \text{kPa} \\ 5.06 & \text{kN/m per bay width} \end{array}$$

Internal Pressure Coefficient

Windward open area	0
Other surfaces openings	0
Cpi	-0.3 or 0.0

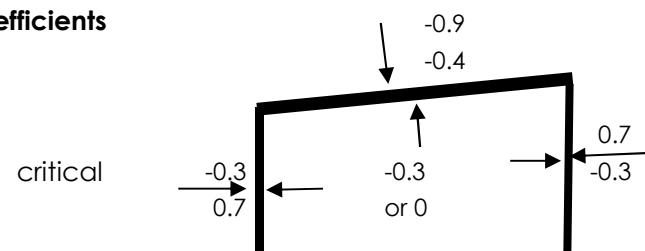
External Pressure Coefficients

Windward wall	0.7
Leeward wall	-0.3
Roof	-0.9
or	-0.4

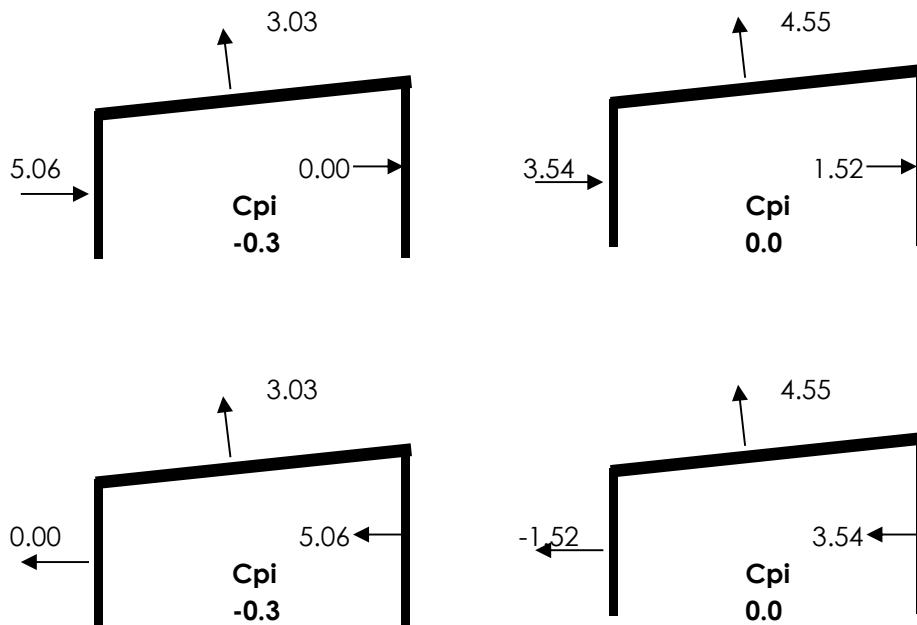
Client: Tumu Timbers - Matt Patrick
 Project: Garage/lean to

 SCL Ref: 2366-7905
 Ref: HA108050
 Date: 5/8/19
 BY: GN

Subject: Wind Loads


Sheet No.:	7
------------	---

CARTERTON DISTRICT COUNCIL - APPROVED B/CNO. 200188 - DATE: 6/08/2020


Ref: Design

Output

Pressure Coefficients

Wind loads (kN/m)

Client: **Tumu Timbers - Matt Patrick**
 Project: **Garage/lean to**

 SCL Ref: **2366-7905**
 Ref: **HA108050**
 Date: **5/8/19**
 BY: **GN**

 Subject: **Seismic Loads**

Sheet No.:	8
------------	----------

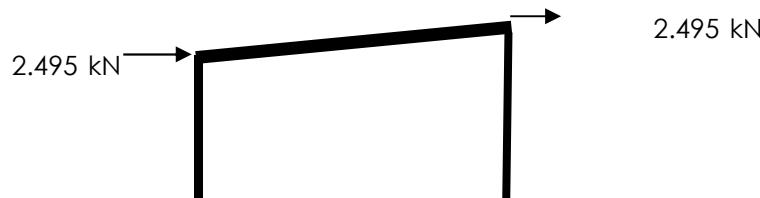
CARTERTON DISTRICT COUNCIL - APPROVED B/CNO. 200188 - DATE: 6/8/2020

Ref:	Design	Output																																																																																							
	<p>Seismic Loads</p> <p>Across/bay</p> <table> <thead> <tr> <th>Element</th> <th>Area/length</th> <th>Load Kpa</th> <th>Total kN</th> </tr> </thead> <tbody> <tr> <td>Roof with Rafter</td> <td>35.10</td> <td>0.16</td> <td>5.62 kN</td> </tr> <tr> <td>Wall with Pole</td> <td>15.35</td> <td>0.15</td> <td>2.30 kN</td> </tr> <tr> <td></td> <td></td> <td></td> <td>7.92 kN</td> </tr> </tbody> </table> <p>Along Roof</p> <table> <thead> <tr> <th>Element</th> <th>Area/length</th> <th>Load Kpa</th> <th>Total kN</th> </tr> </thead> <tbody> <tr> <td>Roof with Rafter</td> <td>52.65</td> <td>0.16</td> <td>8.42 kN</td> </tr> <tr> <td>Wall with Pole</td> <td>13.30</td> <td>0.15</td> <td>1.99 kN</td> </tr> <tr> <td></td> <td></td> <td></td> <td>10.41 kN</td> </tr> </tbody> </table> <p>Along Wall</p> <table> <thead> <tr> <th>Element</th> <th>Area/length</th> <th>Load Kpa</th> <th>Total kN</th> </tr> </thead> <tbody> <tr> <td>Roof with Rafter</td> <td>105.30</td> <td>0.16</td> <td>16.85 kN</td> </tr> <tr> <td>Wall with Pole</td> <td>72.63</td> <td>0.15</td> <td>10.89 kN</td> </tr> <tr> <td></td> <td></td> <td></td> <td>27.74 kN</td> </tr> </tbody> </table> <p>Period of building across the building</p> <table> <tr> <td>Structural ductility factor (Ultimate)</td> <td>$\mu =$</td> <td>1.00</td> </tr> <tr> <td>Hazard Factor (North Island worst case)</td> <td>$Z =$</td> <td>0.42</td> </tr> <tr> <td>Return period factor</td> <td>$Ru =$</td> <td>0.50</td> </tr> <tr> <td>Structural Performance factor (Ultimate)</td> <td>$Sp =$</td> <td>1.00</td> </tr> <tr> <td>Soil Type</td> <td>Deep or soft</td> <td>D</td> </tr> <tr> <td>Spectral Shape Factor (across)</td> <td>$Ch(T) =$</td> <td>3.00</td> </tr> <tr> <td>Near Fault factor</td> <td>$N(T,D) =$</td> <td>1.0</td> </tr> <tr> <td>Elastic site spectra (Ultimate)</td> <td>$C(T) =$</td> <td>0.63</td> </tr> <tr> <td>Ultimate</td> <td>$k\mu =$</td> <td>1.00</td> </tr> </table> <p>Horizontal design action coefficients (Across)</p> <table> <tr> <td>$Cd(T1) =$</td> <td>0.63</td> <td>But not less than 0.030Ru</td> </tr> </table> <p>Ultimate force across the building</p> <table> <tr> <td>$Cd(T1) \times Wi =$</td> <td>4.99</td> <td>kN Total</td> </tr> </table> <p>Ultimate force along the building (roof)</p> <table> <tr> <td>$Cd(T1) \times Wi =$</td> <td>6.56</td> <td>kN Total</td> </tr> </table> <p>Ultimate force along the building (wall)</p> <table> <tr> <td>$Cd(T1) \times Wi =$</td> <td>17.48</td> <td>kN Total</td> </tr> </table>	Element	Area/length	Load Kpa	Total kN	Roof with Rafter	35.10	0.16	5.62 kN	Wall with Pole	15.35	0.15	2.30 kN				7.92 kN	Element	Area/length	Load Kpa	Total kN	Roof with Rafter	52.65	0.16	8.42 kN	Wall with Pole	13.30	0.15	1.99 kN				10.41 kN	Element	Area/length	Load Kpa	Total kN	Roof with Rafter	105.30	0.16	16.85 kN	Wall with Pole	72.63	0.15	10.89 kN				27.74 kN	Structural ductility factor (Ultimate)	$\mu =$	1.00	Hazard Factor (North Island worst case)	$Z =$	0.42	Return period factor	$Ru =$	0.50	Structural Performance factor (Ultimate)	$Sp =$	1.00	Soil Type	Deep or soft	D	Spectral Shape Factor (across)	$Ch(T) =$	3.00	Near Fault factor	$N(T,D) =$	1.0	Elastic site spectra (Ultimate)	$C(T) =$	0.63	Ultimate	$k\mu =$	1.00	$Cd(T1) =$	0.63	But not less than 0.030Ru	$Cd(T1) \times Wi =$	4.99	kN Total	$Cd(T1) \times Wi =$	6.56	kN Total	$Cd(T1) \times Wi =$	17.48	kN Total	
Element	Area/length	Load Kpa	Total kN																																																																																						
Roof with Rafter	35.10	0.16	5.62 kN																																																																																						
Wall with Pole	15.35	0.15	2.30 kN																																																																																						
			7.92 kN																																																																																						
Element	Area/length	Load Kpa	Total kN																																																																																						
Roof with Rafter	52.65	0.16	8.42 kN																																																																																						
Wall with Pole	13.30	0.15	1.99 kN																																																																																						
			10.41 kN																																																																																						
Element	Area/length	Load Kpa	Total kN																																																																																						
Roof with Rafter	105.30	0.16	16.85 kN																																																																																						
Wall with Pole	72.63	0.15	10.89 kN																																																																																						
			27.74 kN																																																																																						
Structural ductility factor (Ultimate)	$\mu =$	1.00																																																																																							
Hazard Factor (North Island worst case)	$Z =$	0.42																																																																																							
Return period factor	$Ru =$	0.50																																																																																							
Structural Performance factor (Ultimate)	$Sp =$	1.00																																																																																							
Soil Type	Deep or soft	D																																																																																							
Spectral Shape Factor (across)	$Ch(T) =$	3.00																																																																																							
Near Fault factor	$N(T,D) =$	1.0																																																																																							
Elastic site spectra (Ultimate)	$C(T) =$	0.63																																																																																							
Ultimate	$k\mu =$	1.00																																																																																							
$Cd(T1) =$	0.63	But not less than 0.030Ru																																																																																							
$Cd(T1) \times Wi =$	4.99	kN Total																																																																																							
$Cd(T1) \times Wi =$	6.56	kN Total																																																																																							
$Cd(T1) \times Wi =$	17.48	kN Total																																																																																							

Client: Tumu Timbers - Matt Patrick
Project: Garage/lean to

SCL Ref: 2366-7905
Ref: HA108050
Date: 5/8/19
BY: GN

Subject: Seismic Loads


CARTERTON DISTRICT COUNCIL - APPROVED B/CNO. 200188 - DATE: 6/08/2020

Ref:

Design

Sheet No.:	9
Output	

Across

Roof Bracing

Wall Bracing

Client: **Tumu Timbers - Matt Patrick**
 Project: **Garage/lean to**

 Subject: **Rafter Design**

Sheet No.:	10
Output	

CARTERTON DISTRICT COUNCIL - APPROVED B/CNO. 200188 - DATE: 6/8/2020

Ref:	Design	Output																																																																																																						
	<p>Flexural Demand</p> $M^* = \frac{wl^2}{8}$ <table> <tr> <td>Span</td> <td>$l = 7.8$</td> <td>m</td> </tr> <tr> <td>spacing</td> <td>$s = 4.5$</td> <td>m</td> </tr> <tr> <td>Loads (w)</td> <td></td> <td></td> </tr> <tr> <td>1.35G</td> <td>$1.35 \times 0.16 \times 4.5$</td> <td>0.97</td> <td>kN/m</td> </tr> <tr> <td>1.2G + 1.5Q</td> <td>$(1.2 \times 0.16 + 1.5 \times 0.25) \times 4.5$</td> <td>2.55</td> <td>kN/m</td> </tr> <tr> <td>1.2G + S</td> <td>$(1.2 \times 0.16 + 0.252) \times 4.5$</td> <td>2</td> <td>kN/m</td> </tr> <tr> <td>0.9G + W</td> <td>$(0.9 \times 0.16 - 2.17) \times 4.5$</td> <td>-1.52</td> <td>kN/m</td> </tr> <tr> <td>$M^*_{1.35G}$</td> <td>7.38</td> <td>kNm</td> <td></td> </tr> <tr> <td>$M^*_{1.2G + 1.5Q}$</td> <td>19.39</td> <td>kNm</td> <td></td> </tr> <tr> <td>$M^*_{1.2G + S}$</td> <td>15.21</td> <td>kNm</td> <td></td> </tr> <tr> <td>$M^*_{0.9G + W}$</td> <td>11.57</td> <td>kNm</td> <td></td> </tr> </table> <p>Flexural Capacity</p> $M_n = K_1 \times K_4 \times K_5 \times K_8 \times K_{24} \times Z \times F_b$ <table> <tr> <td>Beam depth</td> <td>$D = 300$</td> <td>mm</td> </tr> <tr> <td>Beam width</td> <td>$B = 90$</td> <td>mm</td> </tr> <tr> <td>Bending stress from table 2.3</td> <td>$F_b = 38$</td> <td>Mpa</td> </tr> <tr> <td>Number of sections</td> <td>$N = 1$</td> <td></td> </tr> <tr> <td></td> <td>$\emptyset = 0.9$</td> <td></td> </tr> <tr> <td>Elastic modulus</td> <td>$Z = N \times B \times D^2 / 6 = 1350$</td> <td>cm³</td> </tr> <tr> <td>$K_4=1$</td> <td>$K_5=1$</td> <td>$K_{24} = 1$</td> </tr> <tr> <td>For Gravity Lay is spacing between purlins</td> <td>$Lay = 1.4$</td> <td>m</td> </tr> <tr> <td>Slenderness factor</td> <td>$S_1 = 9.49$</td> <td></td> </tr> <tr> <td>Stability factor from table 2.8</td> <td>$K_8 = 1.000$</td> <td></td> </tr> <tr> <td>For Wind Uplift</td> <td></td> <td></td> </tr> <tr> <td>Purlin depth exceeds half beam depth</td> <td>$Lay = 1.4$</td> <td>m</td> </tr> <tr> <td>Slenderness factor for uplift</td> <td>$S_1 = 9.49$</td> <td></td> </tr> <tr> <td>Stability factor from table 2.8</td> <td>$K_8 = 1$</td> <td></td> </tr> <tr> <td></td> <td>Duration factor</td> <td></td> </tr> <tr> <td>$\emptyset M_{n,1.35G} = 27.7$</td> <td>kNm</td> <td>$K_1=0.6$</td> <td>OK</td> </tr> <tr> <td>$\emptyset M_{n,1.2G+1.5Q} = 46.17$</td> <td>kNm</td> <td>$K_1=1.0$</td> <td>OK</td> </tr> <tr> <td>$\emptyset M_{n,1.2G+S} = 36.94$</td> <td>kNm</td> <td>$K_1=0.8$</td> <td>OK</td> </tr> <tr> <td>$\emptyset M_{n,0.9G+W} = 46.17$</td> <td>kNm</td> <td>$K_1=1.0$</td> <td>OK</td> </tr> </table> <p>Shear Capacity</p> <p style="text-align: center;">NOT CRITICAL</p>	Span	$l = 7.8$	m	spacing	$s = 4.5$	m	Loads (w)			1.35G	$1.35 \times 0.16 \times 4.5$	0.97	kN/m	1.2G + 1.5Q	$(1.2 \times 0.16 + 1.5 \times 0.25) \times 4.5$	2.55	kN/m	1.2G + S	$(1.2 \times 0.16 + 0.252) \times 4.5$	2	kN/m	0.9G + W	$(0.9 \times 0.16 - 2.17) \times 4.5$	-1.52	kN/m	$M^*_{1.35G}$	7.38	kNm		$M^*_{1.2G + 1.5Q}$	19.39	kNm		$M^*_{1.2G + S}$	15.21	kNm		$M^*_{0.9G + W}$	11.57	kNm		Beam depth	$D = 300$	mm	Beam width	$B = 90$	mm	Bending stress from table 2.3	$F_b = 38$	Mpa	Number of sections	$N = 1$			$\emptyset = 0.9$		Elastic modulus	$Z = N \times B \times D^2 / 6 = 1350$	cm ³	$K_4=1$	$K_5=1$	$K_{24} = 1$	For Gravity Lay is spacing between purlins	$Lay = 1.4$	m	Slenderness factor	$S_1 = 9.49$		Stability factor from table 2.8	$K_8 = 1.000$		For Wind Uplift			Purlin depth exceeds half beam depth	$Lay = 1.4$	m	Slenderness factor for uplift	$S_1 = 9.49$		Stability factor from table 2.8	$K_8 = 1$			Duration factor		$\emptyset M_{n,1.35G} = 27.7$	kNm	$K_1=0.6$	OK	$\emptyset M_{n,1.2G+1.5Q} = 46.17$	kNm	$K_1=1.0$	OK	$\emptyset M_{n,1.2G+S} = 36.94$	kNm	$K_1=0.8$	OK	$\emptyset M_{n,0.9G+W} = 46.17$	kNm	$K_1=1.0$	OK	
Span	$l = 7.8$	m																																																																																																						
spacing	$s = 4.5$	m																																																																																																						
Loads (w)																																																																																																								
1.35G	$1.35 \times 0.16 \times 4.5$	0.97	kN/m																																																																																																					
1.2G + 1.5Q	$(1.2 \times 0.16 + 1.5 \times 0.25) \times 4.5$	2.55	kN/m																																																																																																					
1.2G + S	$(1.2 \times 0.16 + 0.252) \times 4.5$	2	kN/m																																																																																																					
0.9G + W	$(0.9 \times 0.16 - 2.17) \times 4.5$	-1.52	kN/m																																																																																																					
$M^*_{1.35G}$	7.38	kNm																																																																																																						
$M^*_{1.2G + 1.5Q}$	19.39	kNm																																																																																																						
$M^*_{1.2G + S}$	15.21	kNm																																																																																																						
$M^*_{0.9G + W}$	11.57	kNm																																																																																																						
Beam depth	$D = 300$	mm																																																																																																						
Beam width	$B = 90$	mm																																																																																																						
Bending stress from table 2.3	$F_b = 38$	Mpa																																																																																																						
Number of sections	$N = 1$																																																																																																							
	$\emptyset = 0.9$																																																																																																							
Elastic modulus	$Z = N \times B \times D^2 / 6 = 1350$	cm ³																																																																																																						
$K_4=1$	$K_5=1$	$K_{24} = 1$																																																																																																						
For Gravity Lay is spacing between purlins	$Lay = 1.4$	m																																																																																																						
Slenderness factor	$S_1 = 9.49$																																																																																																							
Stability factor from table 2.8	$K_8 = 1.000$																																																																																																							
For Wind Uplift																																																																																																								
Purlin depth exceeds half beam depth	$Lay = 1.4$	m																																																																																																						
Slenderness factor for uplift	$S_1 = 9.49$																																																																																																							
Stability factor from table 2.8	$K_8 = 1$																																																																																																							
	Duration factor																																																																																																							
$\emptyset M_{n,1.35G} = 27.7$	kNm	$K_1=0.6$	OK																																																																																																					
$\emptyset M_{n,1.2G+1.5Q} = 46.17$	kNm	$K_1=1.0$	OK																																																																																																					
$\emptyset M_{n,1.2G+S} = 36.94$	kNm	$K_1=0.8$	OK																																																																																																					
$\emptyset M_{n,0.9G+W} = 46.17$	kNm	$K_1=1.0$	OK																																																																																																					

Client: **Tumu Timbers - Matt Patrick**
 Project: **Garage/lean to**

 Subject: **Main Poles**

CARTERTON DISTRICT COUNCIL - APPROVED B/CNO. 200188 - DATE: 6/8/2020

Sheet No.:	11
Output	

Ref:	Design			
	Flexural Demand	M*	15.50 kNm	
	Shear Demand	V*	10.82 kN	
	Height of pole		3.00 m	
	Use of timber is Wet			
	Pole diameter	SED	175 mm	
	Diameter at base (assuming 7mm tapper/m)	D	196 mm	
	Section properties			
	Outer zone density (table 7.1)		350 kg/m ³	
	Modulus of elasticity from table 7.1	E	8.7 GPa	
	Area	3.142 x (D/2) ²	= A	30176 mm ²
	Moment of inertia	<u>3.142 x D⁴</u> 64	= I	7245.20 cm ⁴
	Elastic modulus	<u>3.142 x D³</u> 32	= Z	739.31 cm ³
	Bending stress from table 7.1	F _b	38 Mpa	
	Shear stress from table 7.1	F _s	3.1 Mpa	
	K Factors for bending			
	Strength reduction factor	Ø	0.80	
	Duration of load	K ₁	1.00	
	Dry use factor	K ₂₂	1.00	
	Shaving or peeling factor	K ₂₀	0.85	
	Steaming factor	K ₂₁	0.85	
	Bending			
	Nominal strength in bending			
	K ₁ x K ₂₀ x K ₂₁ x K ₂₂ x Z x F _b	=	M _n	20.30 kNm
	Strength in bending		M _n x Ø	ØM _n
				16.24 kNm
	K Factors for shear			
	Strength reduction factor	Ø	0.80	
	Duration of load	K ₁	1.00	
	Dry use factor	K ₂₂	1.06	
	Shaving or peeling factor	K ₂₀	1.00	
	Steaming factor	K ₂₁	0.90	
	Shear			
	Nominal shear strength			
	K ₁ x K ₂₀ x K ₂₁ x K ₂₂ x A x F _s x 10 ⁻³	=	V _n	89.24 kN
	Shear strength		V _n x Ø	ØV _n
				71.39 kN

 Subject: **Main Pole Foundation**

Client: **Tumu Timbers - Matt Patrick**
 Project: **Garage/lean to**

 SCL Ref: **2366-7905**
 Ref: **HA108050**
 Date: **5/8/19**
 BY: **GN**
Cantilever Action

Sheet No.:	12
------------	-----------

 Ref: **6/08/2020**
Design
Output
Cantilever Action

Undrained shear strength	s_u	75 kPa
Diameter of the pile shaft below ground	D_s	0.6 m
Bending moment at base	M^*	15.501 kNm
Horizontal shear force	H	10.820 kN
Distance above ground H is applied	f	1.43 m
Length of pile shaft below ground	L	1.50 m
Strength reduction factor	ϕ	0.6

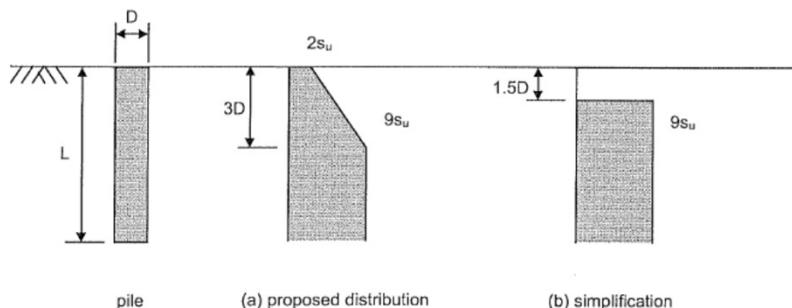


Figure 1 Limiting lateral soil resistance proposed by Broms (1964)

Length of pile shaft assumed to be unsupported = to

length of stress block	$1.5D_s = f_o$	0.6 m
Nominal lateral pile resistance	$L - f_o = L'$	0.90 m

$$9s_u D_s \left[\sqrt{(2f + L')^2 + L'^2} - (2f + L') \right] = H_u \quad 21.8 \text{ kN}$$

 Ultimate lateral pile resistance $\phi H_u \quad 13.1 \text{ kN}$
Lateral pile capacity reduction factors for piles spacings

From Broms (NZ Building Code)		
Pile spacing	4.00	m
Isolated pile lateral resistance	100.0	%

Undrained Lateral pile capacity reduction factors for slopes

Correction factor from table 5 (reduction)	1.0
--	-----

 Ultimate lateral pile resistance with reduction factors 13.1 kN
PASS

Client: **Tumu Timbers - Matt Patrick**
 Project: **Garage/lean to**

 SCL Ref: **2366-7905**
 Ref: **HA108050**
 Date: **5/8/19**
 BY: **GN**
Bearing and Uplift

 Sheet No.: **13**

Ref:	Design			Output	
	Axial load on pad (Ultimate Limit State)		10.94	kN	
	Ultimate bearing capacity of soil		300	kPa	
	Soil density		17	KN/m ³	
	Strength reduction	ϕ	0.5		
	Factored ULS Bearing strength of soil		150	kPa	
	<u>Pad foundation size</u>				
	Diameter	D	0.600	m	
	Depth	L	1.500	m	
	Add the weight of foundation to load minus soil weight		2.97	kN	
	Design load on foundation	Nc*	13.91	kN	
	Bearing pressure below foundation	Nc* / A =	49.2	kPa	49.19 < 150 kPa
					PASS
	<u>Uplift</u>				
	Uplift from sheet 4	R*	13.21	kN	
	Mass of concrete		10.18	kN	NEED FRICTION
	Friction required	R _{friction}	3.03	kN	
			1.07	kPa	
		<	37.5	kPa	PASS

 Subject: **Purlins**

CARTERTON DISTRICT COUNCIL - APPROVED B/CNO. 200188 - DATE: 6/08/2020

Client: **Tumu Timbers - Matt Patrick**
 Project: **Garage/lean to**

 SCL Ref: **2366-7905**
 Ref: **HA108050**
 Date: **5/8/19**
 BY: **GN**

CARTERTON DISTRICT COUNCIL - APPROVED B/CNO. 200188 - DATE: 6/08/2020

Ref:	Design				Output																																																																																																																																																								
	<p>Flexural Demand</p> $M^* = wl^2/8$ <table> <tr> <td>Span</td> <td>$l = 4.41$</td> <td>m</td> <td></td> <td></td> <td></td> </tr> <tr> <td>spacing</td> <td>$s = 1.4$</td> <td>m</td> <td></td> <td></td> <td></td> </tr> <tr> <td>Loads (w)</td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>1.35G</td> <td>$1.35 \times 0.12 \times 1.4$</td> <td></td> <td>0.23</td> <td>kN/m</td> <td></td> </tr> <tr> <td>1.2G + 1.5Q</td> <td>$(1.2 \times 0.12 + 1.5 \times 0.25) \times 1.4$</td> <td></td> <td>0.73</td> <td>kN/m</td> <td></td> </tr> <tr> <td>1.2G + S</td> <td>$(1.2 \times 0.12 + 0.252) \times 1.4$</td> <td></td> <td>0.55</td> <td>kN/m</td> <td></td> </tr> <tr> <td>0.9G + W</td> <td>$-(0.9 \times 0.12 - 1.01) \times 1.4$</td> <td></td> <td>1.26</td> <td>kN/m</td> <td></td> </tr> <tr> <td>$M^*_{1.35G}$</td> <td>0.56</td> <td>kNm</td> <td></td> <td></td> <td></td> </tr> <tr> <td>$M^*_{1.2G + 1.5Q}$</td> <td>1.78</td> <td>kNm</td> <td></td> <td></td> <td></td> </tr> <tr> <td>$M^*_{1.2G + S}$</td> <td>1.34</td> <td>kNm</td> <td></td> <td></td> <td></td> </tr> <tr> <td>$M^*_{0.9G + W}$</td> <td>3.07</td> <td>kNm</td> <td>uplift</td> <td></td> <td></td> </tr> </table> <p>Flexural Capacity</p> $M_n = K_1 \times K_4 \times K_5 \times K_8 \times Z \times F_b$ <table> <tr> <td>Beam depth</td> <td>D</td> <td>200</td> <td>mm</td> <td></td> <td></td> </tr> <tr> <td>Beam width</td> <td>B</td> <td>50</td> <td>mm</td> <td></td> <td></td> </tr> <tr> <td>Bending stress from table 2.3</td> <td>F_b</td> <td>14</td> <td>Mpa</td> <td>SG8</td> <td></td> </tr> <tr> <td>Number of sections</td> <td>N</td> <td>1</td> <td></td> <td></td> <td></td> </tr> <tr> <td>Elastic modulus</td> <td>$Z = N \times B \times D^2 / 6$</td> <td></td> <td>333</td> <td>cm³</td> <td></td> </tr> <tr> <td>K₄=1</td> <td>K₅=1</td> <td></td> <td>$\emptyset = 0.8$</td> <td></td> <td></td> </tr> <tr> <td>Slenderness factor</td> <td>S1</td> <td>restrained</td> <td><10</td> <td></td> <td>Gravity</td> </tr> <tr> <td>Stability factor from table 2.8</td> <td>K8</td> <td><10</td> <td>1</td> <td></td> <td></td> </tr> <tr> <td>Slenderness factor</td> <td>S1</td> <td>3D/B</td> <td>12</td> <td></td> <td>Uplift</td> </tr> <tr> <td>Stability factor from table 2.8</td> <td>K8</td> <td>0.960</td> <td></td> <td></td> <td></td> </tr> <tr> <td></td> <td></td> <td>Duration factor</td> <td></td> <td></td> <td></td> </tr> <tr> <td>$\emptyset M_n_{1.35G} =$</td> <td>2.24</td> <td>kNm</td> <td>K1=0.6</td> <td></td> <td>OK</td> </tr> <tr> <td>$\emptyset M_n_{1.2G+1.5Q} =$</td> <td>3.73</td> <td>kNm</td> <td>K1=1.0</td> <td></td> <td>OK</td> </tr> <tr> <td>$\emptyset M_n_{1.2G+S} =$</td> <td>2.99</td> <td>kNm</td> <td>K1=0.8</td> <td></td> <td>OK</td> </tr> <tr> <td>$\emptyset M_n_{0.9G+W} =$</td> <td>3.58</td> <td>kNm</td> <td>K1=1.0</td> <td></td> <td>OK</td> </tr> </table> <p>Shear Capacity</p> <p style="text-align: center;">NOT CRITICAL</p>	Span	$l = 4.41$	m				spacing	$s = 1.4$	m				Loads (w)						1.35G	$1.35 \times 0.12 \times 1.4$		0.23	kN/m		1.2G + 1.5Q	$(1.2 \times 0.12 + 1.5 \times 0.25) \times 1.4$		0.73	kN/m		1.2G + S	$(1.2 \times 0.12 + 0.252) \times 1.4$		0.55	kN/m		0.9G + W	$-(0.9 \times 0.12 - 1.01) \times 1.4$		1.26	kN/m		$M^*_{1.35G}$	0.56	kNm				$M^*_{1.2G + 1.5Q}$	1.78	kNm				$M^*_{1.2G + S}$	1.34	kNm				$M^*_{0.9G + W}$	3.07	kNm	uplift			Beam depth	D	200	mm			Beam width	B	50	mm			Bending stress from table 2.3	F _b	14	Mpa	SG8		Number of sections	N	1				Elastic modulus	$Z = N \times B \times D^2 / 6$		333	cm ³		K ₄ =1	K ₅ =1		$\emptyset = 0.8$			Slenderness factor	S1	restrained	<10		Gravity	Stability factor from table 2.8	K8	<10	1			Slenderness factor	S1	3D/B	12		Uplift	Stability factor from table 2.8	K8	0.960						Duration factor				$\emptyset M_n_{1.35G} =$	2.24	kNm	K1=0.6		OK	$\emptyset M_n_{1.2G+1.5Q} =$	3.73	kNm	K1=1.0		OK	$\emptyset M_n_{1.2G+S} =$	2.99	kNm	K1=0.8		OK	$\emptyset M_n_{0.9G+W} =$	3.58	kNm	K1=1.0		OK
Span	$l = 4.41$	m																																																																																																																																																											
spacing	$s = 1.4$	m																																																																																																																																																											
Loads (w)																																																																																																																																																													
1.35G	$1.35 \times 0.12 \times 1.4$		0.23	kN/m																																																																																																																																																									
1.2G + 1.5Q	$(1.2 \times 0.12 + 1.5 \times 0.25) \times 1.4$		0.73	kN/m																																																																																																																																																									
1.2G + S	$(1.2 \times 0.12 + 0.252) \times 1.4$		0.55	kN/m																																																																																																																																																									
0.9G + W	$-(0.9 \times 0.12 - 1.01) \times 1.4$		1.26	kN/m																																																																																																																																																									
$M^*_{1.35G}$	0.56	kNm																																																																																																																																																											
$M^*_{1.2G + 1.5Q}$	1.78	kNm																																																																																																																																																											
$M^*_{1.2G + S}$	1.34	kNm																																																																																																																																																											
$M^*_{0.9G + W}$	3.07	kNm	uplift																																																																																																																																																										
Beam depth	D	200	mm																																																																																																																																																										
Beam width	B	50	mm																																																																																																																																																										
Bending stress from table 2.3	F _b	14	Mpa	SG8																																																																																																																																																									
Number of sections	N	1																																																																																																																																																											
Elastic modulus	$Z = N \times B \times D^2 / 6$		333	cm ³																																																																																																																																																									
K ₄ =1	K ₅ =1		$\emptyset = 0.8$																																																																																																																																																										
Slenderness factor	S1	restrained	<10		Gravity																																																																																																																																																								
Stability factor from table 2.8	K8	<10	1																																																																																																																																																										
Slenderness factor	S1	3D/B	12		Uplift																																																																																																																																																								
Stability factor from table 2.8	K8	0.960																																																																																																																																																											
		Duration factor																																																																																																																																																											
$\emptyset M_n_{1.35G} =$	2.24	kNm	K1=0.6		OK																																																																																																																																																								
$\emptyset M_n_{1.2G+1.5Q} =$	3.73	kNm	K1=1.0		OK																																																																																																																																																								
$\emptyset M_n_{1.2G+S} =$	2.99	kNm	K1=0.8		OK																																																																																																																																																								
$\emptyset M_n_{0.9G+W} =$	3.58	kNm	K1=1.0		OK																																																																																																																																																								

 Subject: **End Poles**

 Sheet No.: **15**

Client: **Tumu Timbers - Matt Patrick**
 Project: **Garage/lean to**

 SCL Ref: **2366-7905**
 Ref: **HA108050**
 Date: **5/8/19**
 BY: **GN**

CARTERTON DISTRICT COUNCIL - APPROVED B/CNO. 200188 - DATE: 6/08/2020

Ref:	Design		Output
	Flexural Demand	M*	3.45 kNm
	Shear Demand	V*	3.89 kN
	Height of pole		3.55 m
	Use of timber is We		
	Pole diameter	SED	150 mm
	Diameter at base (assuming 0mm tapper/m)	D	150 mm
	Section properties		
	Outer zone density (table 7.1)		350 kg/m ³
	Modulus of elasticity from table 7.1	E	8.7 GPa
	Area	3.142 x (D/2) ²	= A
	Moment of inertia	<u>3.142 x D⁴</u> 64	= I
	Elastic modulus	<u>3.142 x D³</u> 32	= Z
	Bending stress from table 7.1	F _b	38 Mpa
	Shear stress from table 7.1	F _s	3.1 Mpa
	K Factors for bending		
	Strength reduction factor	Ø	0.80
	Duration of load	K ₁	1.00
	Dry use factor	K ₂₂	1.25
	Shaving or peeling factor	K ₂₀	0.85
	Steaming factor	K ₂₁	0.85
	Bending		
	Nominal strength in bending	K ₁ x K ₂₀ x K ₂₁ x K ₂₂ x Z x F _b	= M _n
			11.37 kNm
	Strength in bending	M _n x Ø	= ØM _n
			9.10 kNm
	K Factors for shear		
	Strength reduction factor	Ø	0.80
	Duration of load	K ₁	1.00
	Dry use factor	K ₂₂	1.06
	Shaving or peeling factor	K ₂₀	1.00
	Steaming factor	K ₂₁	0.90
	Shear		
	Nominal shear strength	K ₁ x K ₂₀ x K ₂₁ x K ₂₂ x A x F _s x 10 ⁻³	= V _n
			52.27 kN
	Shear strength	V _n x Ø	= ØV _n
			41.81 kN

 Subject: **Side Poles**

Client: **Tumu Timbers - Matt Patrick**
 Project: **Garage/lean to**

 SCL Ref: **2366-7905**
 Ref: **HA108050**
 Date: **5/8/19**
 BY: **GN**

CARTERTON DISTRICT COUNCIL - APPROVED B/CNO. 200188 - DATE: 6/08/2020

Ref:	Design		Output
	Flexural Demand	M*	4.61 kNm
	Shear Demand	V*	4.83 kN
	Height of pole		3.82 m
	Use of timber is Wel		
	Pole diameter	SED	150 mm
	Diameter at base (assuming 0mm tapper/m)	D	150 mm
	Section properties		
	Outer zone density (table 7.1)		350 kg/m ³
	Modulus of elasticity from table 7.1	E	8.7 GPa
	Area	3.142 x (D/2) ²	= A
	Moment of inertia	$\frac{3.142 \times D^4}{64}$	= I
	Elastic modulus	$\frac{3.142 \times D^3}{32}$	= Z
	Bending stress from table 7.1	F _b	38 Mpa
	Shear stress from table 7.1	F _s	3.1 Mpa
	K Factors for bending		
	Strength reduction factor	Ø	0.80
	Duration of load	K ₁	1.00
	Dry use factor	K ₂₂	1.25
	Shaving or peeling factor	K ₂₀	0.85
	Steaming factor	K ₂₁	0.85
	Bending		
	Nominal strength in bending	$K_1 \times K_{20} \times K_{21} \times K_{22} \times Z \times F_b = M_n$	11.37 kNm
	Strength in bending	$M_n \times \emptyset = \emptyset M_n$	9.10 kNm
	K Factors for shear		
	Strength reduction factor	Ø	0.80
	Duration of load	K ₁	1.00
	Dry use factor	K ₂₂	1.06
	Shaving or peeling factor	K ₂₀	1.00
	Steaming factor	K ₂₁	0.90
	Shear		
	Nominal shear strength	$K_1 \times K_{20} \times K_{21} \times K_{22} \times A \times F_s \times 10^{-3} = V_n$	52.27 kN
	Shear strength	$V_n \times \emptyset = \emptyset V_n$	41.81 kN

 Subject: **Side Girts**

Client: **Tumu Timbers - Matt Patrick**
 Project: **Garage/lean to**

CARTERTON DISTRICT COUNCIL - APPROVED B/CNO. 200188 - DATE: 6/08/2020

Ref:	Design	Output																																																																																																																																									
	<p>Flexural Demand</p> $M^* = wl^2/8$ <table> <tr> <td>Span</td> <td>$l = 4.35$</td> <td>m</td> <td></td> <td></td> <td></td> </tr> <tr> <td>spacing</td> <td>$s = 1$</td> <td>m</td> <td></td> <td></td> <td></td> </tr> <tr> <td>Loads (w)</td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>Inward</td> <td>$(0.3+0.7) \times 1.12 \times 1$</td> <td></td> <td>1.12</td> <td>kN/m</td> <td></td> </tr> <tr> <td>Outward</td> <td>$(0.3+0.65) \times 1.12 \times 1$</td> <td></td> <td>1.06</td> <td>kN/m</td> <td></td> </tr> <tr> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>M^*_{Inward}</td> <td>2.65</td> <td>kNm</td> <td></td> <td></td> <td></td> </tr> <tr> <td>M^*_{Outward}</td> <td>2.51</td> <td>kNm</td> <td></td> <td></td> <td></td> </tr> </table> <p>Flexural Capacity</p> $M_n = K_1 \times K_4 \times K_5 \times K_8 \times Z \times F_b$ <table> <tr> <td>Beam depth</td> <td>D</td> <td>150</td> <td>mm</td> <td></td> <td></td> </tr> <tr> <td>Beam width</td> <td>B</td> <td>50</td> <td>mm</td> <td></td> <td></td> </tr> <tr> <td>Bending stress from table 2.3</td> <td>F_b</td> <td>14</td> <td>Mpa</td> <td>SG8</td> <td></td> </tr> <tr> <td>Number of sections</td> <td>N</td> <td>1</td> <td></td> <td></td> <td></td> </tr> <tr> <td>Elastic modulus</td> <td>$Z = N \times B \times D^2 / 6$</td> <td>188</td> <td>cm³</td> <td></td> <td></td> </tr> <tr> <td>K₄=</td> <td>K₅=1</td> <td>$\emptyset = 0.8$</td> <td></td> <td></td> <td></td> </tr> <tr> <td>Slenderness factor</td> <td>S1</td> <td>restrained</td> <td><10</td> <td>Inward</td> <td></td> </tr> <tr> <td>Stability factor from table 2.8</td> <td>K8</td> <td><10</td> <td>1</td> <td></td> <td></td> </tr> <tr> <td>Slenderness factor</td> <td>S1</td> <td>3D/B</td> <td>9</td> <td>Outward</td> <td></td> </tr> <tr> <td>Stability factor from table 2.8</td> <td>K8</td> <td>9</td> <td>1</td> <td></td> <td></td> </tr> <tr> <td></td> <td></td> <td colspan="4">Duration factor</td></tr> <tr> <td>$\emptyset M_n_{\text{Inward}} =$</td> <td>2.1</td> <td>kNm</td> <td>K1=1.0</td> <td>OK</td> <td></td> </tr> <tr> <td>$\emptyset M_n_{\text{Outward}} =$</td> <td>2.1</td> <td>kNm</td> <td>K1=1.0</td> <td>OK</td> <td></td> </tr> <tr> <td>Shear Capacity</td> <td colspan="5" rowspan="2"></td></tr> <tr> <td colspan="6" style="text-align: center;">NOT CRITICAL</td></tr> </table>	Span	$l = 4.35$	m				spacing	$s = 1$	m				Loads (w)						Inward	$(0.3+0.7) \times 1.12 \times 1$		1.12	kN/m		Outward	$(0.3+0.65) \times 1.12 \times 1$		1.06	kN/m								M^*_{Inward}	2.65	kNm				M^*_{Outward}	2.51	kNm				Beam depth	D	150	mm			Beam width	B	50	mm			Bending stress from table 2.3	F _b	14	Mpa	SG8		Number of sections	N	1				Elastic modulus	$Z = N \times B \times D^2 / 6$	188	cm ³			K ₄ =	K ₅ =1	$\emptyset = 0.8$				Slenderness factor	S1	restrained	<10	Inward		Stability factor from table 2.8	K8	<10	1			Slenderness factor	S1	3D/B	9	Outward		Stability factor from table 2.8	K8	9	1					Duration factor				$\emptyset M_n_{\text{Inward}} =$	2.1	kNm	K1=1.0	OK		$\emptyset M_n_{\text{Outward}} =$	2.1	kNm	K1=1.0	OK		Shear Capacity						NOT CRITICAL					
Span	$l = 4.35$	m																																																																																																																																									
spacing	$s = 1$	m																																																																																																																																									
Loads (w)																																																																																																																																											
Inward	$(0.3+0.7) \times 1.12 \times 1$		1.12	kN/m																																																																																																																																							
Outward	$(0.3+0.65) \times 1.12 \times 1$		1.06	kN/m																																																																																																																																							
M^*_{Inward}	2.65	kNm																																																																																																																																									
M^*_{Outward}	2.51	kNm																																																																																																																																									
Beam depth	D	150	mm																																																																																																																																								
Beam width	B	50	mm																																																																																																																																								
Bending stress from table 2.3	F _b	14	Mpa	SG8																																																																																																																																							
Number of sections	N	1																																																																																																																																									
Elastic modulus	$Z = N \times B \times D^2 / 6$	188	cm ³																																																																																																																																								
K ₄ =	K ₅ =1	$\emptyset = 0.8$																																																																																																																																									
Slenderness factor	S1	restrained	<10	Inward																																																																																																																																							
Stability factor from table 2.8	K8	<10	1																																																																																																																																								
Slenderness factor	S1	3D/B	9	Outward																																																																																																																																							
Stability factor from table 2.8	K8	9	1																																																																																																																																								
		Duration factor																																																																																																																																									
$\emptyset M_n_{\text{Inward}} =$	2.1	kNm	K1=1.0	OK																																																																																																																																							
$\emptyset M_n_{\text{Outward}} =$	2.1	kNm	K1=1.0	OK																																																																																																																																							
Shear Capacity																																																																																																																																											
NOT CRITICAL																																																																																																																																											

 | | | |

 Subject: **End Girts**

Sheet No.:	18
------------	-----------

Client: **Tumu Timbers - Matt Patrick**
 Project: **Garage/lean to**

 SCL Ref: **2366-7905**
 Ref: **HA108050**
 Date: **5/8/19**
 BY: **GN**
Flexural Demand

$$M^* = wl^2/8$$

 Span I = 3.75 m
 spacing s = 1 m

Loads (w)

 Inward $(0.3+0.7) \times 1.12 \times 1$ 1.12 kN/m
 Outward $(0.3+0.65) \times 1.12 \times 1$ 1.06 kN/m

 M^*_{Inward} 1.97 kNm
 M^*_{Outward} 1.86 kNm

Flexural Capacity

$$M_n = K_1 \times K_4 \times K_5 \times K_8 \times Z \times F_b$$

Beam depth D 150 mm

Beam width B 50 mm

Bending stress from table 2.3 Fb 14 Mpa

Number of sections N 1

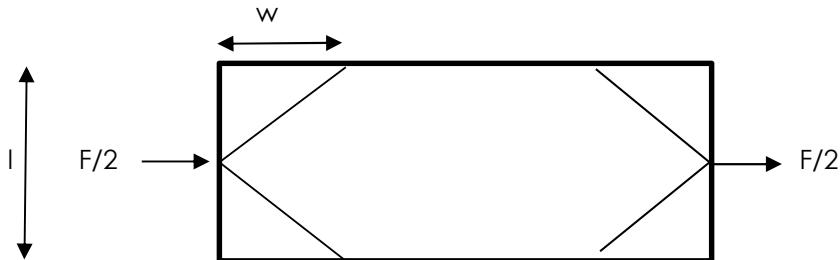
 Elastic modulus Z = N x B x D² / 6 188 cm³

K4= K5=1 Ø = 0.8

Slenderness factor S1 restrained <10 Inward

Stability factor from table 2.8 K8 <10 1

Slenderness factor S1 3D/B 9 Outward


Stability factor from table 2.8 K8 9 1

Duration factor

 $\emptyset M_n_{\text{Inward}} = 3.733333 \text{ kNm}$ K1=1.0 **OK**
 $\emptyset M_n_{\text{Outward}} = 3.733333 \text{ kNm}$ K1=1.0 **OK**
Shear Capacity
NOT CRITICAL

SCL Ref: **2366-7905**Ref: **HA108050**Date: **5/8/19**BY: **GN**Client: **Tumu Timbers - Matt Patrick**
Project: **Garage/lean to**Subject: **Roof Bracing**

Sheet No.:	19
Output	

Design

$$h = 3.41 \text{ m}$$

$$l = 7.8 \text{ m}$$

$$w = 4.5 \text{ m}$$

Wind Demand

$$q = 1.12 \text{ kPa}$$

$$C_p = 1$$

$$F_w = C_p \times q \times h \times l/2 \\ = 14.95 \text{ kN}$$

Seismic Demand

$$F_e = 6 \text{ kN} \quad \text{from sheet 9}$$

Maximum Demand

$$F_{max} = 14.95 \text{ kN}$$

Roof Brace load

$$P_{brace} = F_{max} / 2 \times \sqrt{((l/2)^2 + w^2)} / w \\ = 9.89 \text{ kN}$$

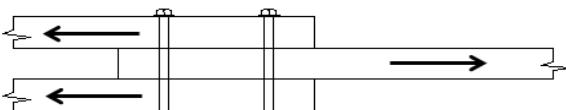
Use

$$P_{allowable} = 13.2 \text{ kN} \quad \text{From manufacturers data}$$

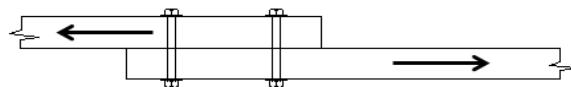
Number of braces required

$$N = P_{brace} / P_{allowable} \\ = 0.749186 \\ = 1 \text{ per side each direction}$$

Client: **Tumu Timbers - Matt Patrick**
 Project: **Garage/lean to**


Subject: **Rafter to Pole Joint**

Sheet No.: **20**


Output

Design

Bolt design

Double shear

Single shear

Ultimate load	9.94	kN
Shear type	Double	
Timber group	J5	
Effective thickness of timber Perpendicular	100	mm
Bolt diameter	16	
Ultimate bearing stress perpendicular	fpj	12.9 Mpa
Duration of load	K1	0.8
Green timber midification	K12	1.0
Multiple number of fastners	K13	1.0
Strength reduction factor	ϕ	0.7
Number of fastners	n	2

For Perpendicular to grain

$$k11 \times fcj \times da^{1.5} = 12.30$$

OR

$$.5 \times be \times fcj \times da = 10.32$$

$$\text{Nominal strength} \quad Q_{ski} = 10.32$$

$$Q_{ski} \times 2 = 20.64$$

$$\text{Design strength of bolt group} = 23.12$$

PASS

Edge & End distances

Loaded end distance	128	Unloaded end distance	80
Loaded edge distance	64	Unloaded edge distance	32
Loaded spacing	80		

Client:	Matt Patrick	Ref No.:	HA108050
Project:	Garage/lean to 395 Te Kopi Road, Masterton	Date:	5/08/19
		SCL Ref:	2366-7905

emajineer
Structural Concepts

3 BAY SHED

Sheet No.	Contents
2	Member Legend & Shed Dimensions
3	Floor Plan
4	Front & Rear Elevations
5	End Elevations
6	Roof Framing Plan
7	Front & Rear Wall Framing Elevations
8	End Wall Framing Elevations

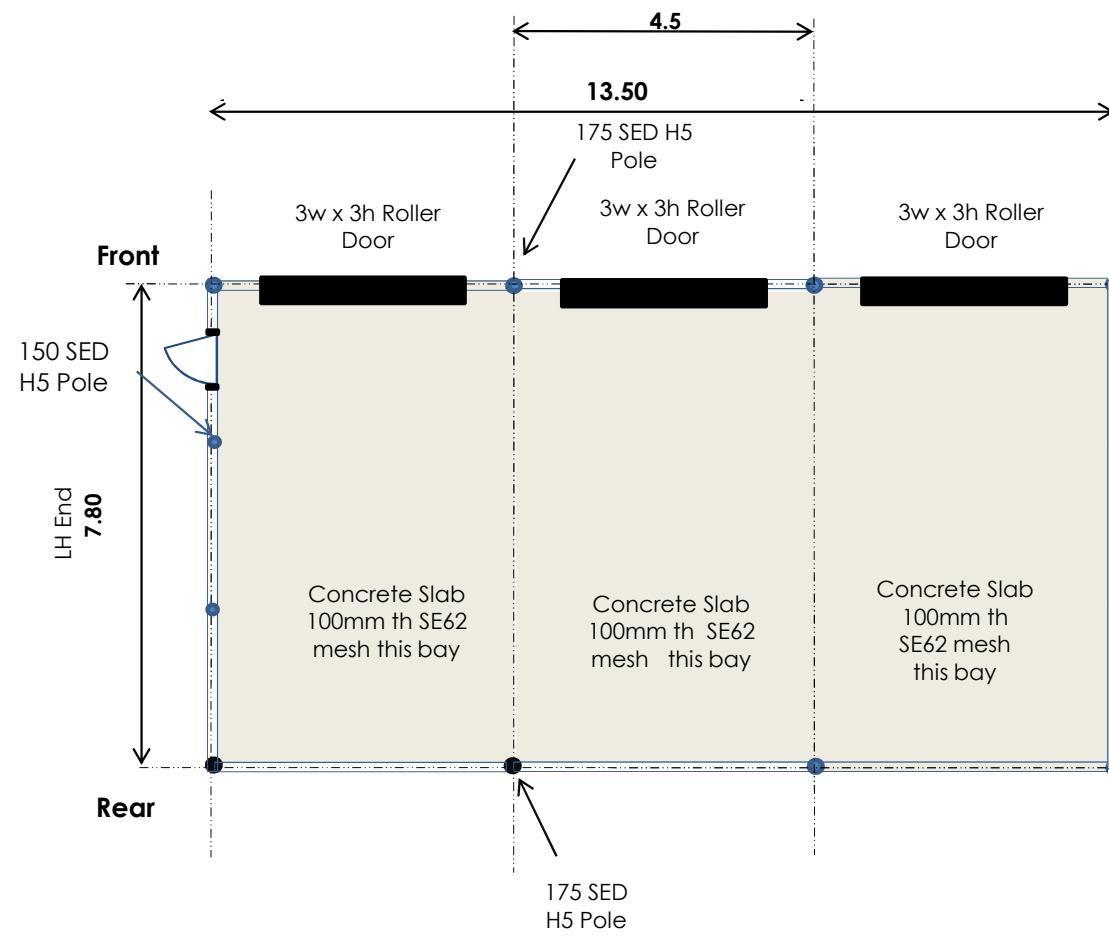
SHEET 1

BUILDING DETAILS SUMMARY

MEMBER SUMMARY

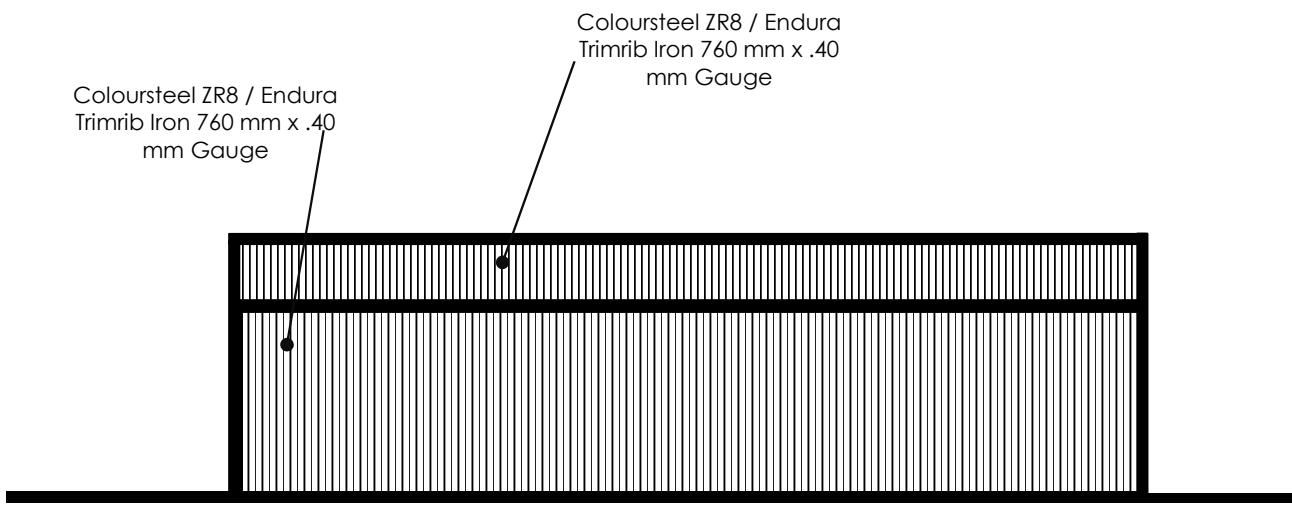
SED Poles	175 SED H5 Pole
Windpost	150 SED H5 Pole
Mid/Main Rafters	SINGLE 300 x 90 Azotek LVL 11 H1.2
End Rafters	SINGLE 250 x 50 Radiata H3.2 Sawn SG8
Front Wall Girts	200 x 50 Radiata H3.2 Sawn SG8 @ 1m crs
Rear Wall Girts	200 x 50 Radiata H3.2 Sawn SG8 @ 1m crs
End Wall Girts	150 x 50 Radiata H3.2 Sawn SG8 @ 1m crs
Purlins	200 x 50 Radiata H3.2 Sawn SG8 @ 1.4m crs
Foundations	
- Main	1.5 m deep x 600mm dia
- End Poles	400mm deep x 600mm dia
- Mid Poles	400mm deep x 600mm dia
- Roller Door	300mm deep x 400mm dia
- PA Door	300mm deep x 300mm dia
Roof & Wall Cladding	Coloursteel ZR8 / Endura Trimrib Iron 760 mm x .40 mm Gauge
Gutter/Spouting	Stormcloud Spouting
Downpipe	Downpipe Round 80 mm RP80

SHED DIMENSIONS

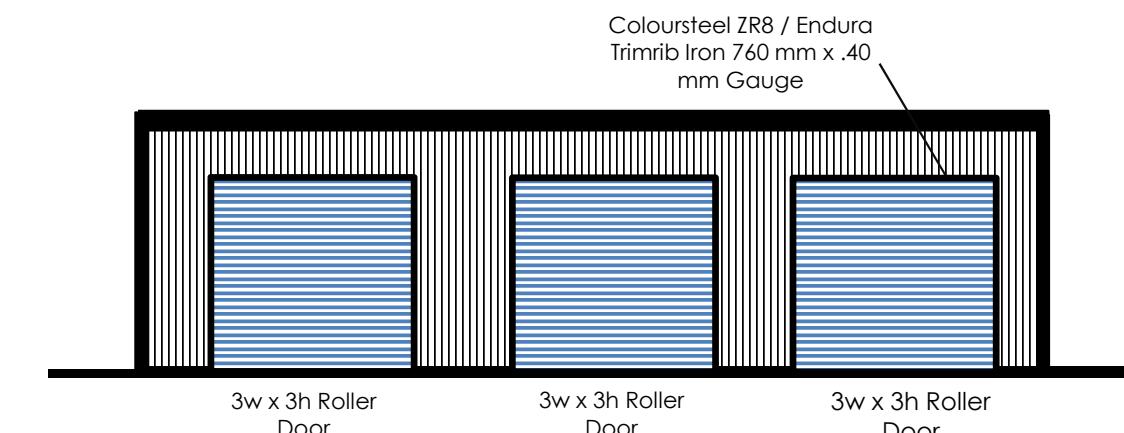

Length	X	13.50	m
Bay Width	Y	4.5	m
Rafter Span	Z	7.80	m
Rear Wall Height	V	3.00	m
Front Wall Height		3.82	m

Client: Matt Patrick
Project: Garage/lean to
395 Te Kopi Road, Masterton

Ref No.: HA108050
Date: 5/08/19
SCL Ref: 2366-7905

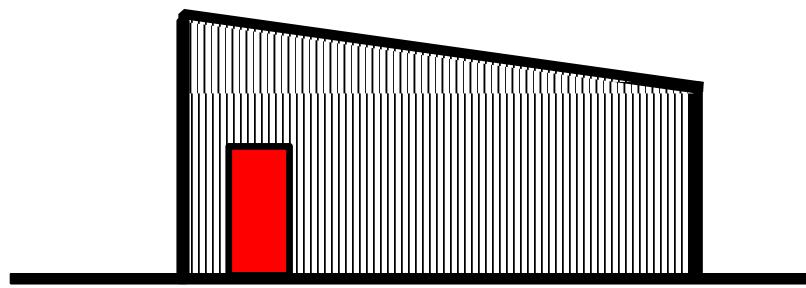

TIMBER SPAN
STRONG TIMBER BUILDINGS

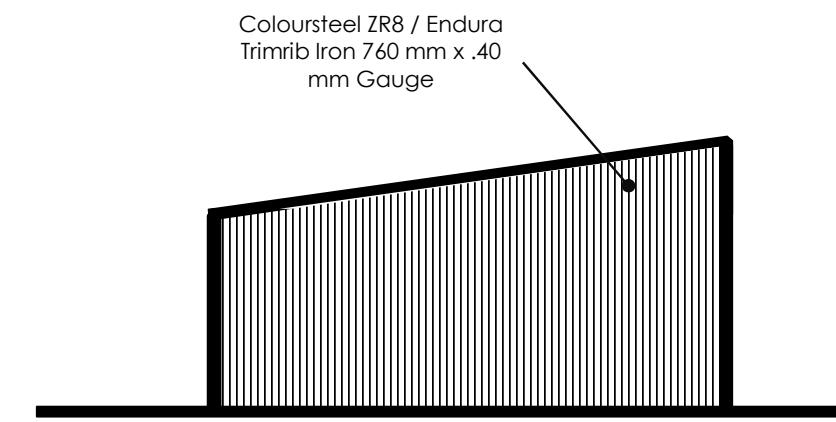
emajineer
Structural Concepts



FLOOR PLAN

Client: Matt Patrick **Ref No.:** HA108050
Project: Garage/lean to **Date:** 5/08/19
395 Te Kopi Road, Masterton **SCL Ref:** 2366-7905


REAR WALL ELEVATION


FRONT WALL ELEVATION

Client: Matt Patrick
Project: Garage/lean to
395 Te Kopi Road, Masterton

Ref No.: HA108050
Date: 5-Aug-19
SCL Ref: 2366-7905

LH END WALL ELEVATION

RH END WALL ELEVATION

Client: Matt Patrick

Ref/ON: HA108050

Project: Garage/lean to
395 Te Kopi Road, Masterton

Date: 5-Aug-19

SCL Ref: 2366-7904

CARTERTON DISTRICT COUNCIL - APPROVED B/CNO. 200188 - DATE

Sheet: D501

Detail Sheets

Sheet No. Detail

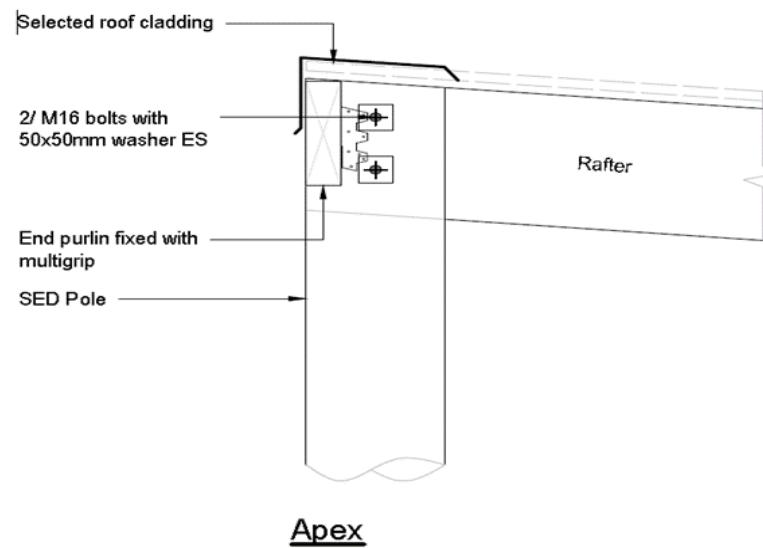
- D502 Apex
- D503 Barge and Eaves
- D504 Girt Fixing
- D505 Purlin Fixing Details
- D506 Purlin Fixing Details
- D507 Typical Rafter Fixing Details
- D508 End Rafter Splice Detail
- D509 End Pole Top Fixing Detail
- D510 Main Pole Footing Detail
- D511 End & Mid Pole Footing Detail
- D512 Side Mid Pole Brace Options
- D513 Blank
- D514 Typical Slab & Thickening

Sheet No. Detail

- D515 Roller Door Framing & Head/Trimmer Details
- D516 Roller Door Base Detail
- D517 PA Door Framing & Door Head
- D518 Door Trimmer Base Details with Slab

Client: Matt Patrick

Project: Garage/lean to
395 Te Kopi Road, Masterton


Ref/ON: HA108050

Date 5-Aug-19
SCL Ref: 2366-7904

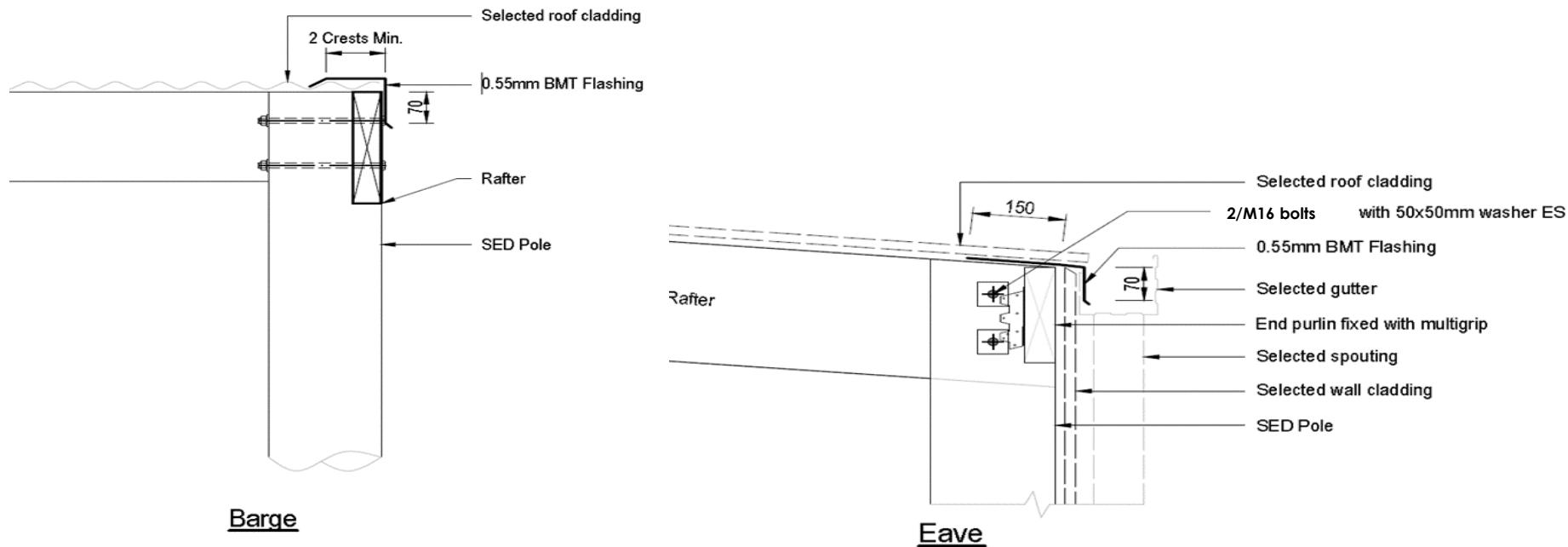
emajineer
Structural Concepts

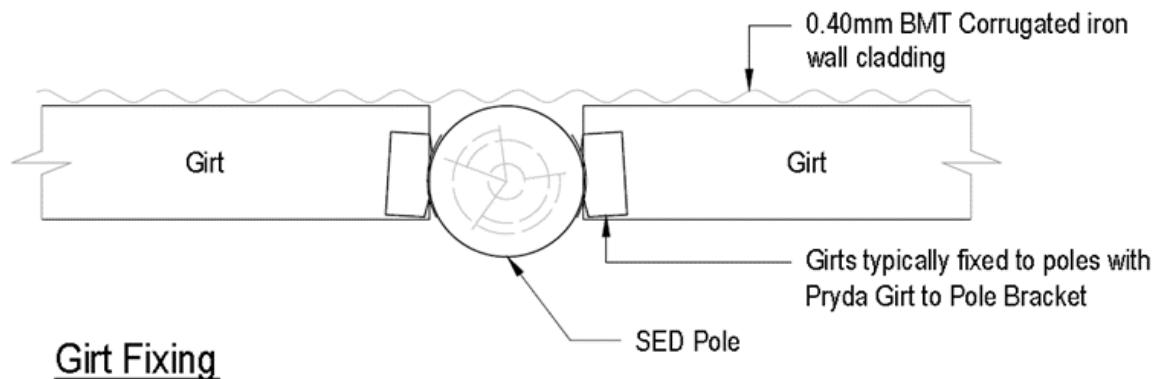
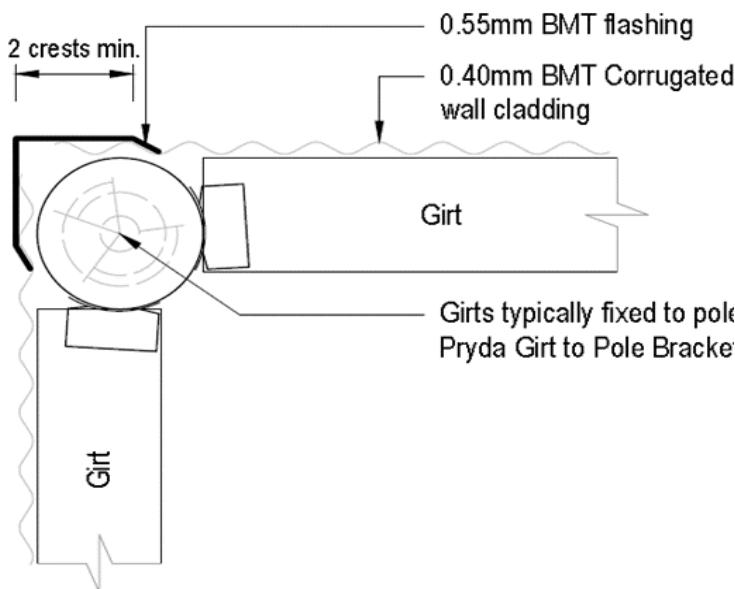
Sheet: D502

Client: Matt Patrick

Ref/ON: HA108050

Project: Garage/lean to
395 Te Kopi Road, Masterton


Date: 5-Aug-19



SCL Ref: 2366-7904

TIMBER SPAN
STRONG TIMBER BUILDINGS

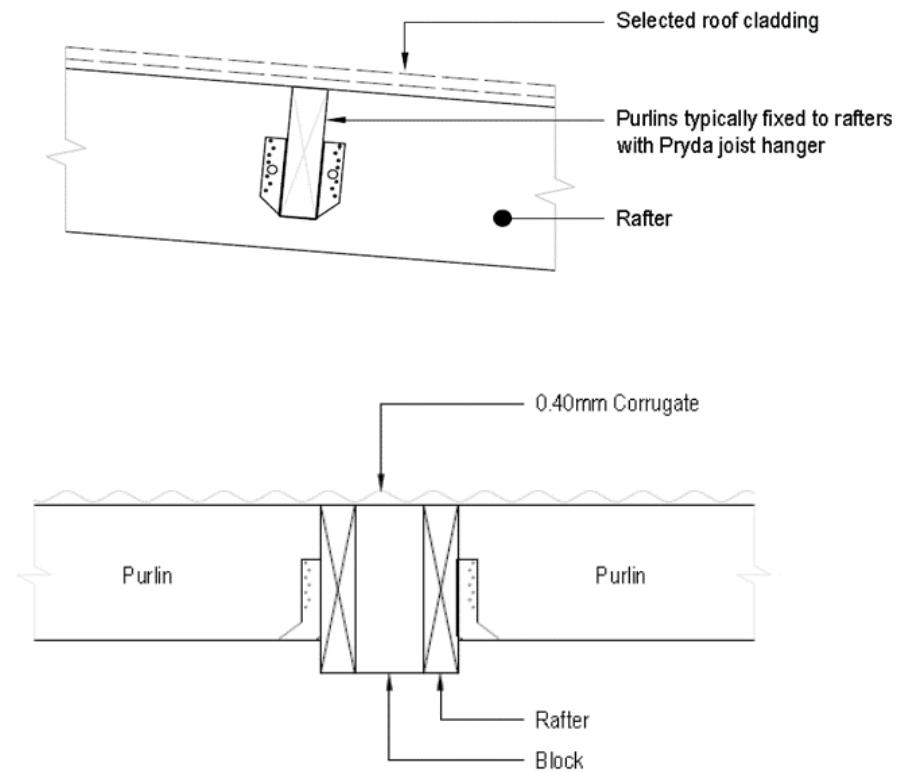
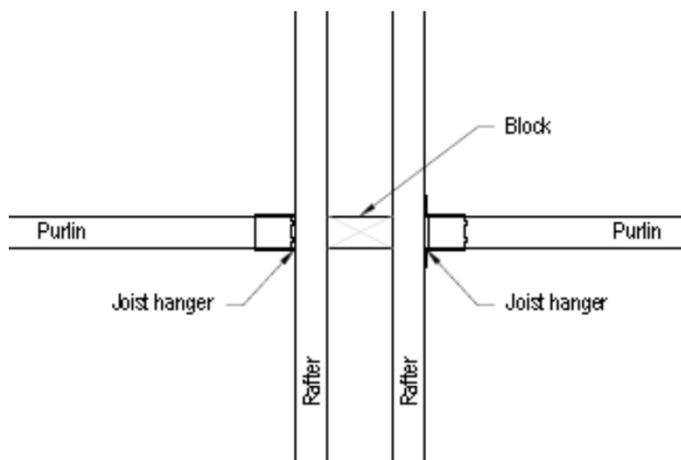
emajineer
Structural Concepts

Sheet: D503

Corner Detail

Client: Matt Patrick

Project: Garage/lean to
395 Te Kopi Road, Masterton



Ref/ON: HA108050

Date 5-Aug-19
SCL Ref: 2366-7904

TIMBER SPAN
STRONG TIMBER BUILDINGS

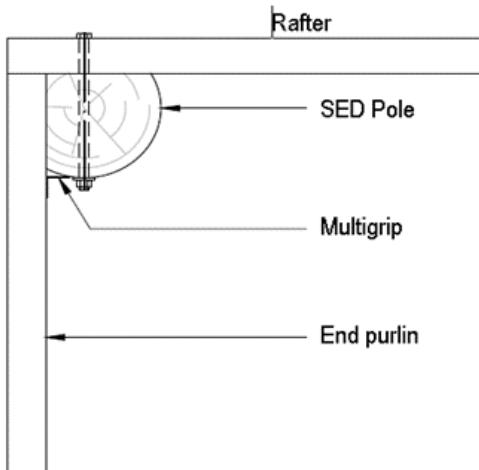
emajineer
Structural Concepts

Sheet D505

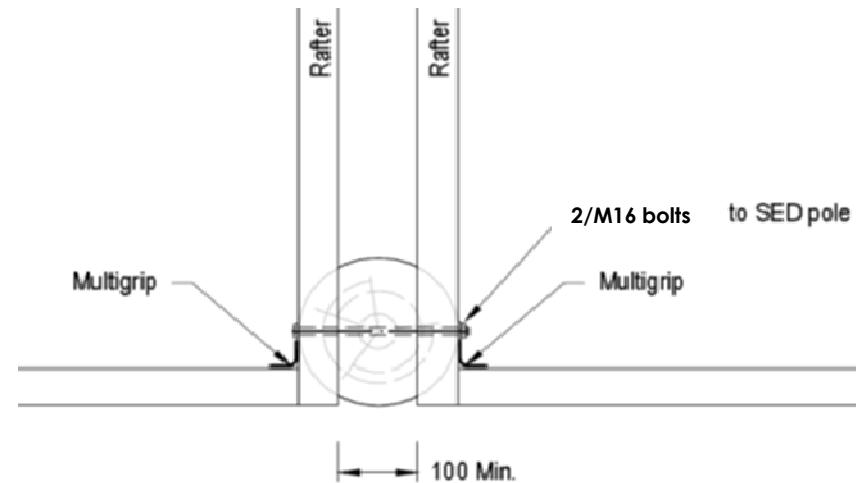
Purlin Fixing

Client: Matt Patrick

Ref/ON: HA108050


Project: Garage/lean to
395 Te Kopi Road, Masterton

Date: 5-Aug-19
SCL Ref: 2366-7904


TIMBER SPAN
STRONG TIMBER BUILDINGS

emajineer
Structural Concepts

Sheet D506

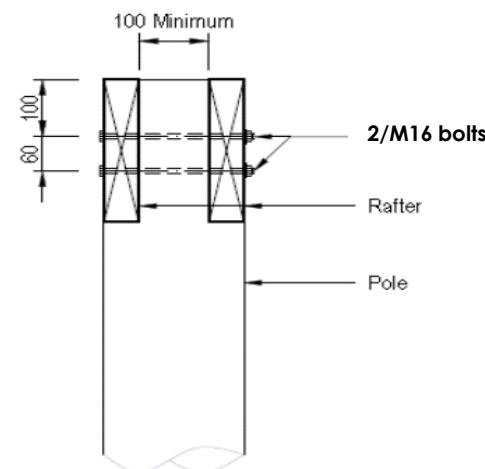
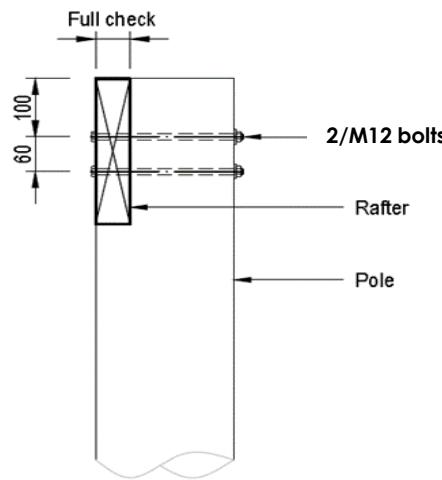
End Purlin Fixing

Client: Matt Patrick

Ref/ON: HA108050

Project: Garage/lean to

395 Te Kopi Road, Masterton



Date 5-Aug-19

SCL Ref: 2366-7904

TIMBER SPAN
STRONG TIMBER BUILDINGS

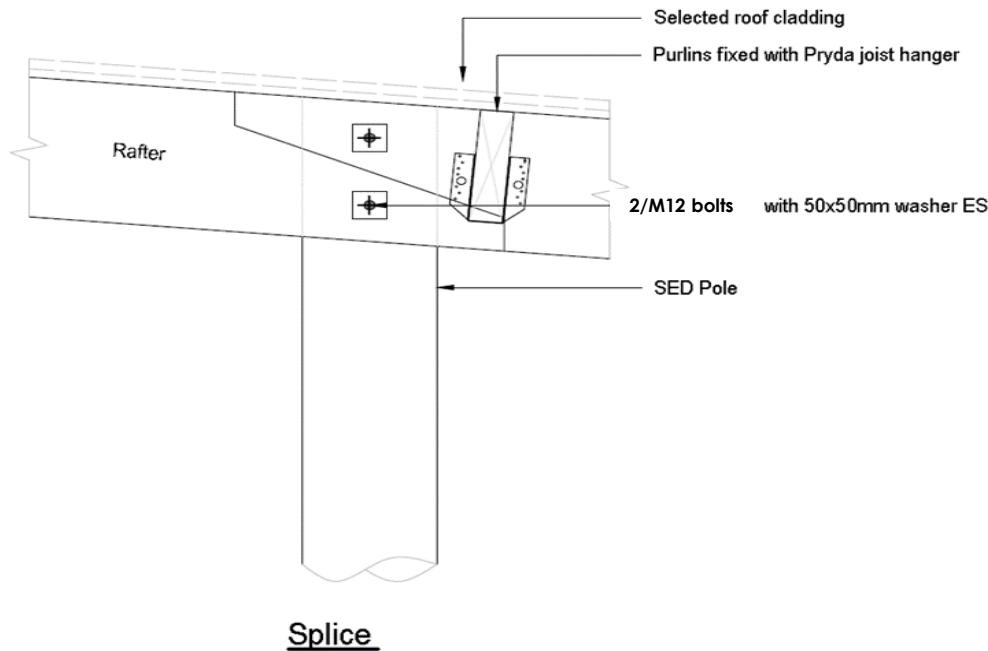
emajineer
Structural Concepts

Sheet D507

TYPICAL RAFTER FIXING DETAILS

Client: Matt Patrick

Ref/ON: HA108050


TIMBER SPAN
STRONG TIMBER BUILDINGS

Project: Garage/lean to
395 Te Kopi Road, Masterton

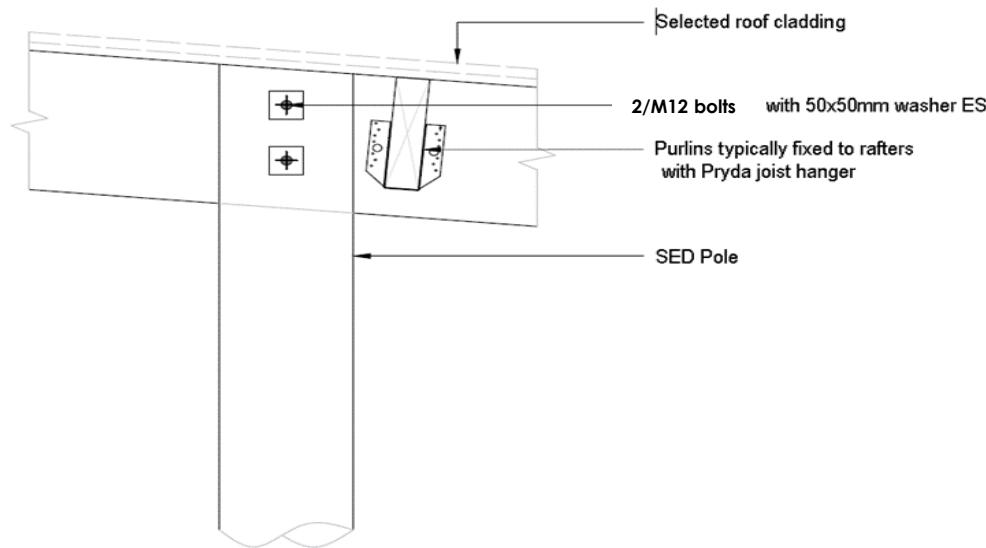
Date: 5-Aug-19
SCL Ref: 2366-7904

emajineer
Structural Concepts

Sheet D508

Client: Matt Patrick

Ref/ON: HA108050



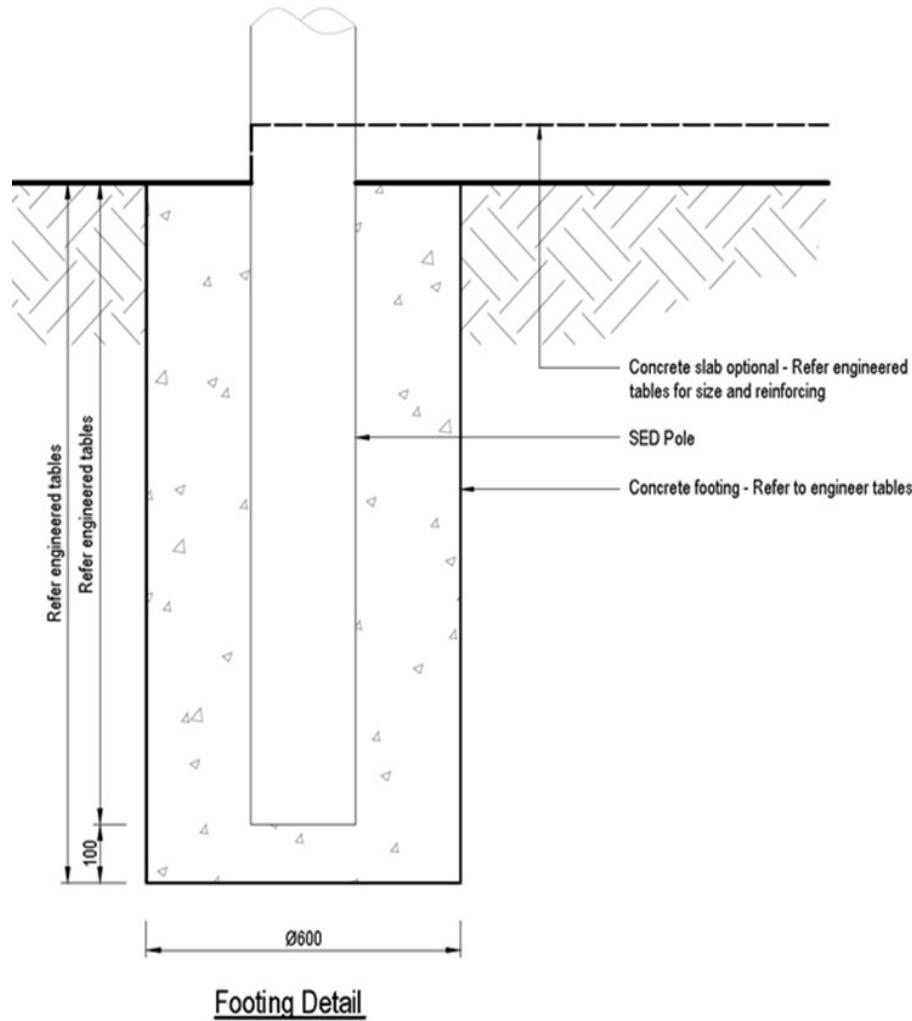
Project: Garage/lean to
395 Te Kopi Road, Masterton

Date: 5-Aug-19
SCL Ref: 2366-7904

emajineer
Structural Concepts

Sheet D509

Windpost Top


Client: Matt Patrick

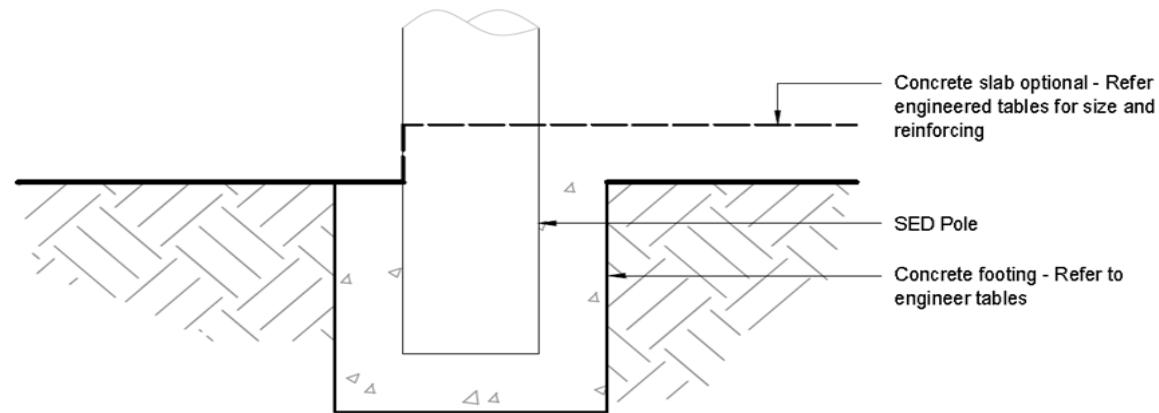
Project: Garage/lean to
395 Te Kopi Road, Masterton

Ref/ON: HA108050

Date 5-Aug-19
SCL Ref: 2366-7904**TIMBER SPAN**
STRONG TIMBER BUILDINGSemajineer
Structural Concepts

Sheet D510

Ref/ON: HA108050


Date 5-Aug-19

SCL Ref: 2366-7904

TIMBER SPAN
STRONG TIMBER BUILDINGS

emajineer
Structural Concepts

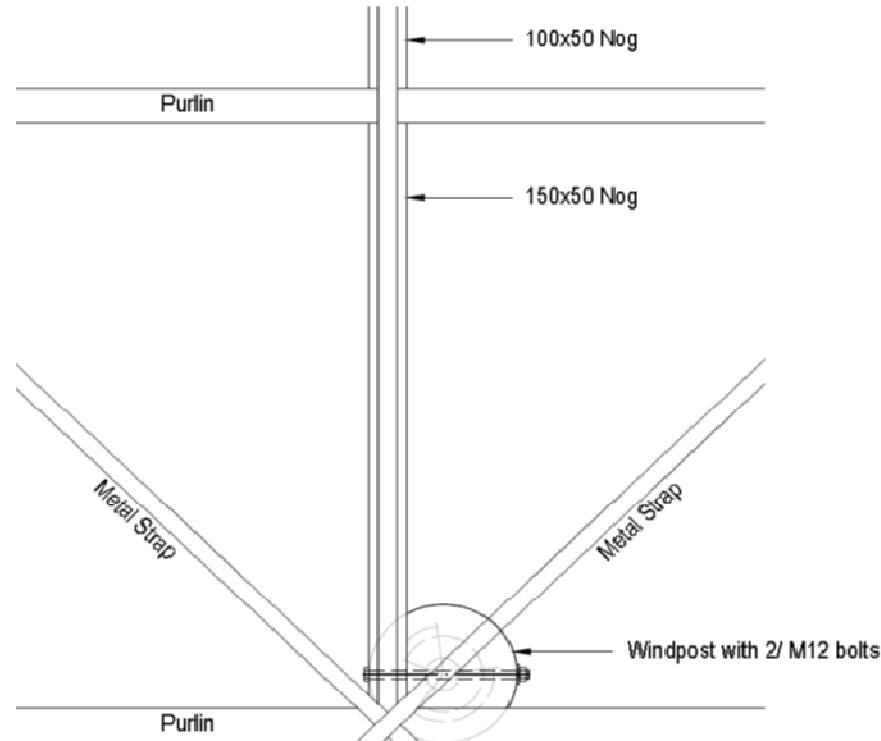
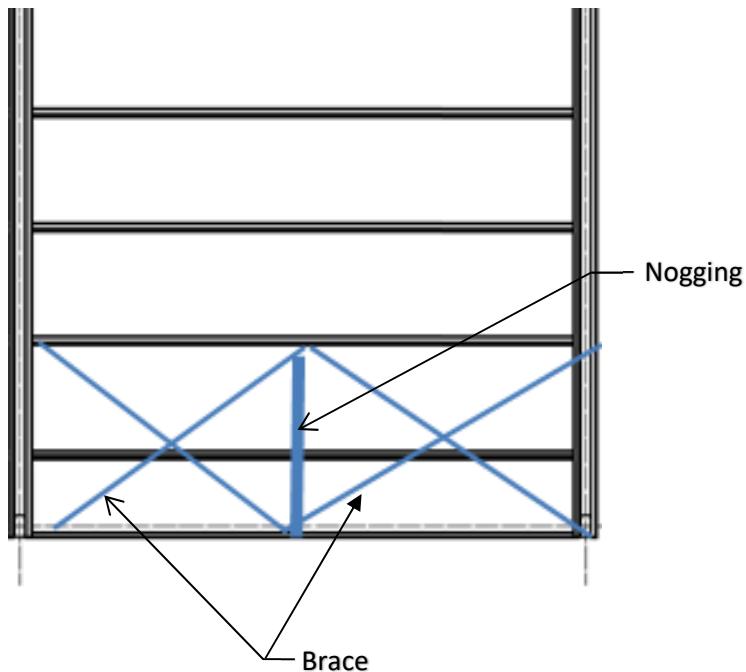
Sheet D511

Windpost Footing Detail

Client: Matt Patrick

Ref/ON: HA108050

Project: Garage/lean to
395 Te Kopi Road, Masterton



Date: 5-Aug-19

SCL Ref: 2366-7904

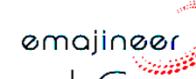
TIMBER SPAN
STRONG TIMBER BUILDINGS

emajineer
Structural Concepts

Sheet D512

NOTE-
Brace - 25mm flat strap
Nogging - 90x45 G8 with flat strap over

MID POLE BRACING LAYOUT


Client: Matt Patrick

Project
Garage/lean to
395 Te Kopi Road, Masterton

Ref/ON: HA108050

Date 5-Aug-19
SCL Ref: 2366-7904

 emajineer
Structural Concepts

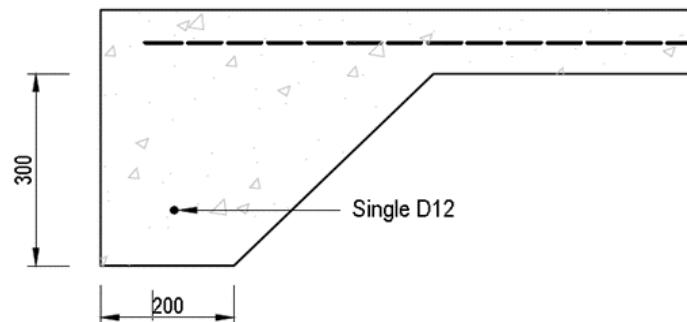
Sheet: D513

BLANK

Client: Matt Patrick

Project: Garage/lean to
395 Te Kopi Road, Masterton

Ref/ON: HA108050


Date 5-Aug-19

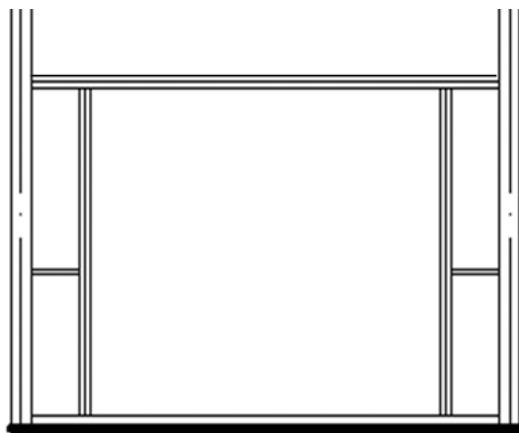
SCL Ref: 2366-7904

TIMBER SPAN
STRONG TIMBER BUILDINGS

emajineer
Structural Concepts

Sheet: D514

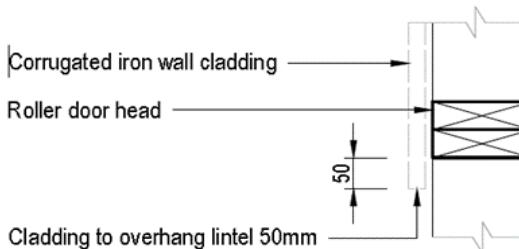
Typical Slab Thickening

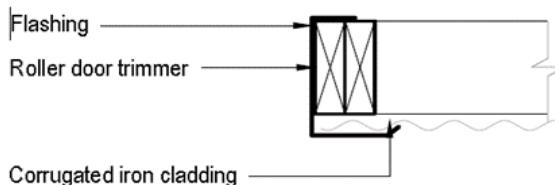

Typical Floor

Client: Matt Patrick

Project: Garage/lean to
395 Te Kopi Road, Masterton

Ref/ON: HA108050


Date: 5-Aug-19
SCL Ref: 2366-7904


TIMBER SPAN
STRONG TIMBER BUILDINGS

emajineer
Structural Concepts

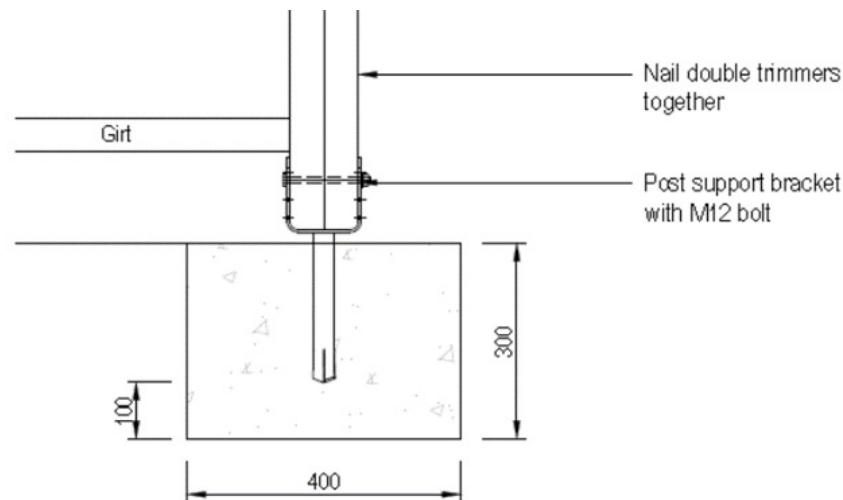
Sheet: D515

Roller Door Head Detail

Roller Door Trimmer Detail

Client: Matt Patrick

Project: Garage/lean to
395 Te Kopi Road, Masterton


Ref/ON: HA108050

Date 5-Aug-19
SCL Ref: 2366-7904

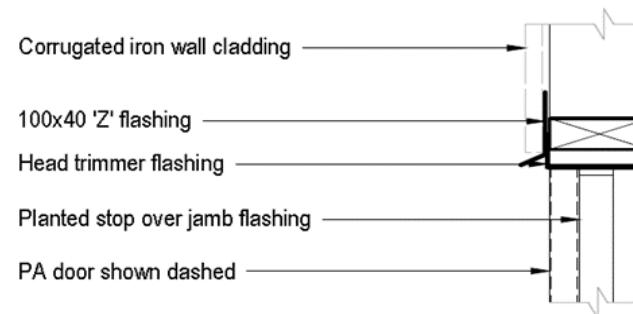
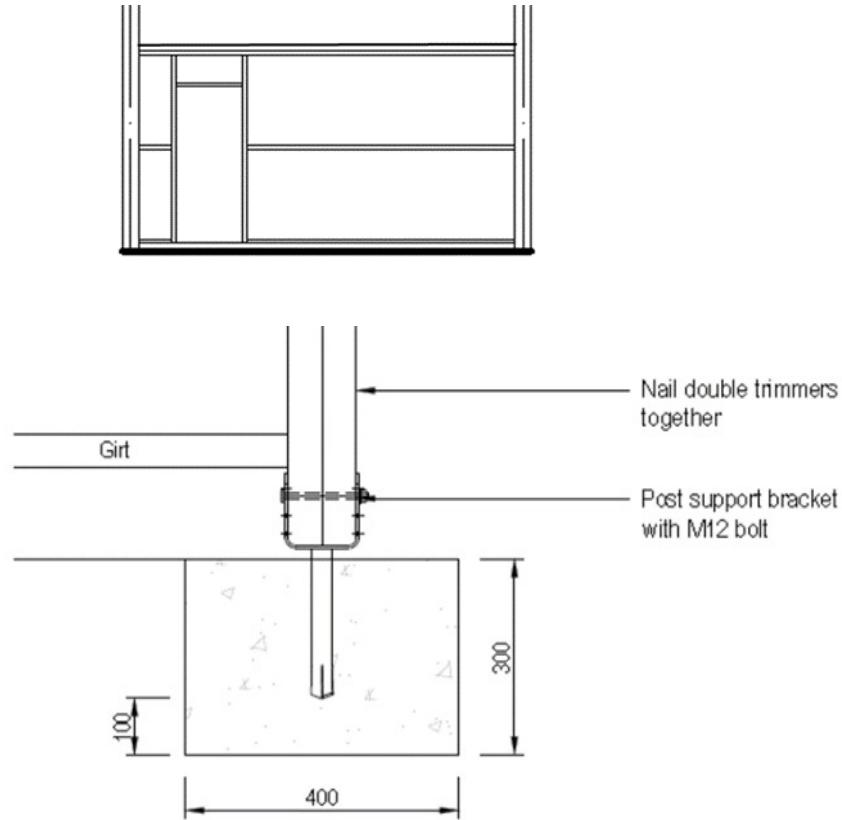
emajineer
Structural Concepts

Sheet: D516

Typical Opening Foundation

Client: Matt Patrick

Ref/ON: HA108050



Project: Garage/lean to

395 Te Kopi Road, Masterton

Date: 5-Aug-19

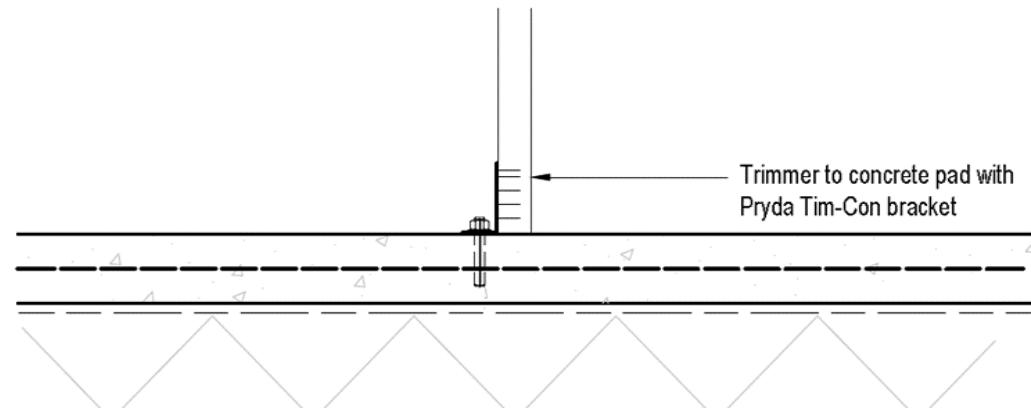
SCL Ref: 2366-7904

Sheet: D517

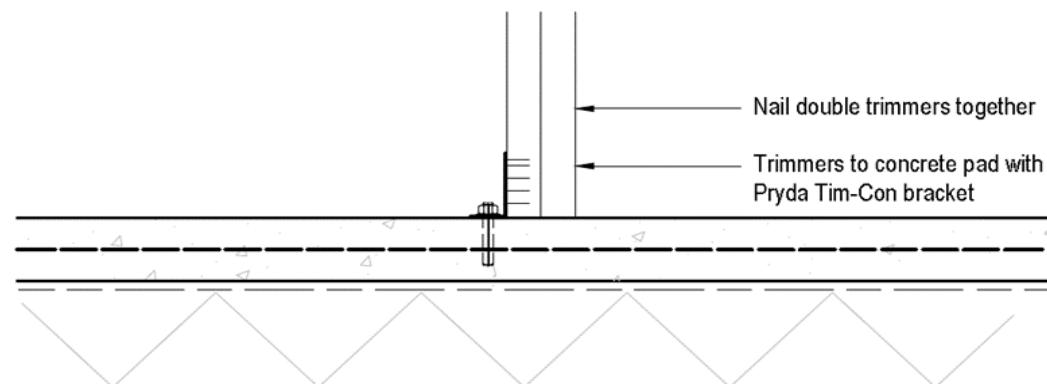
Client: Matt Patrick

Ref/ON: HA108050

Project: Garage/lean to
395 Te Kopi Road, Masterton


Date: 5-Aug-19

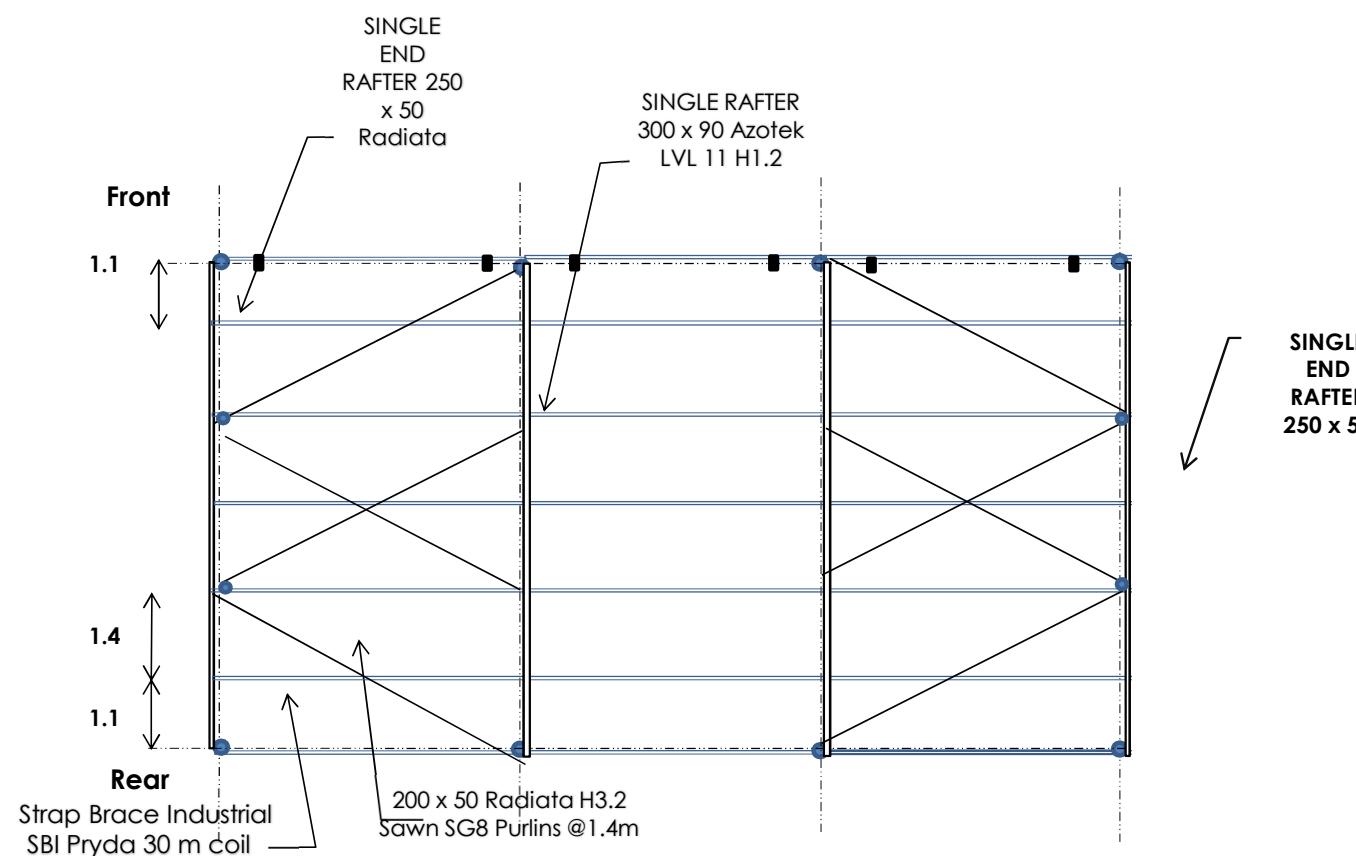
SCL Ref: 2366-7904


TIMBER SPAN
STRONG TIMBER BUILDINGS

emajineer
Structural Concepts

Sheet: D518

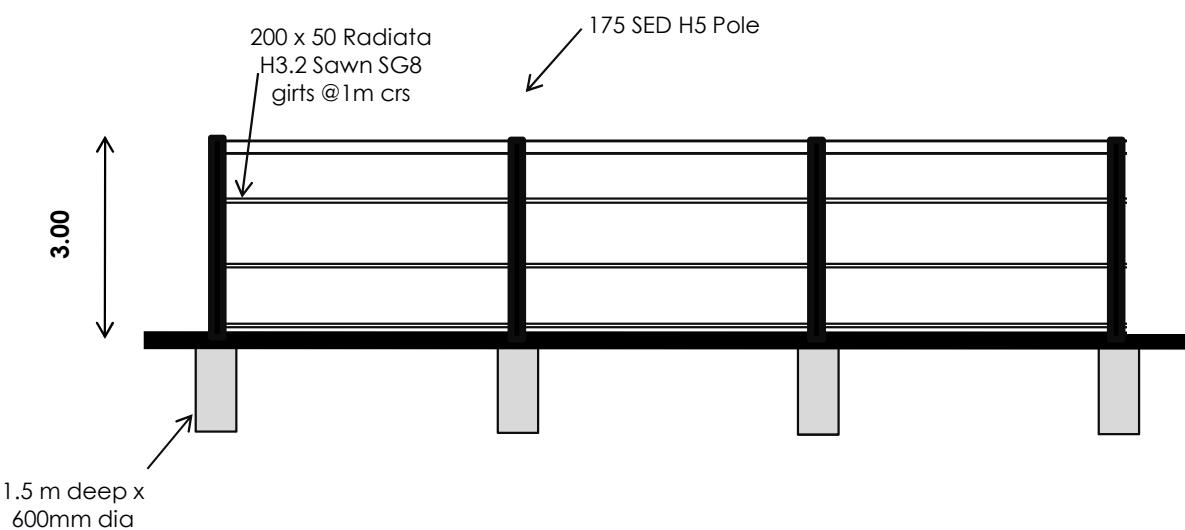
Single Trimmer Base


Double Trimmer Base

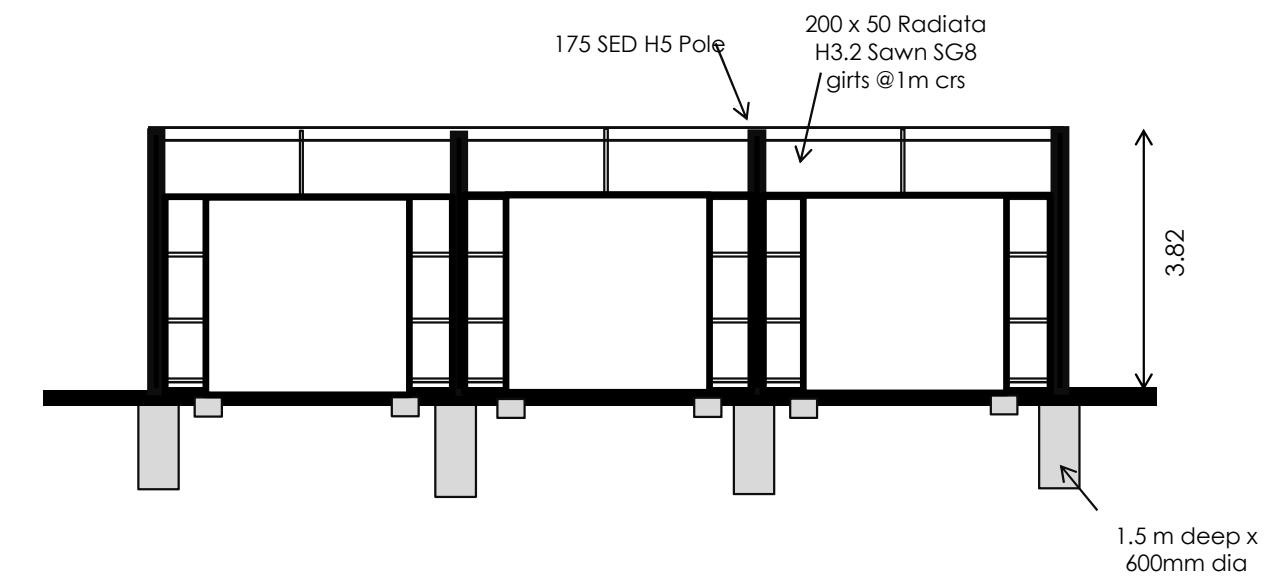
Client: Matt Patrick
Project: Garage/lean to
395 Te Kopi Road, Masterton

Ref No.: HA108050
Date: 5/08/19
SCL Ref: 2366-7905

omajineer
Structural Concepts


SINGLE
END
RAFTER
250 x 50

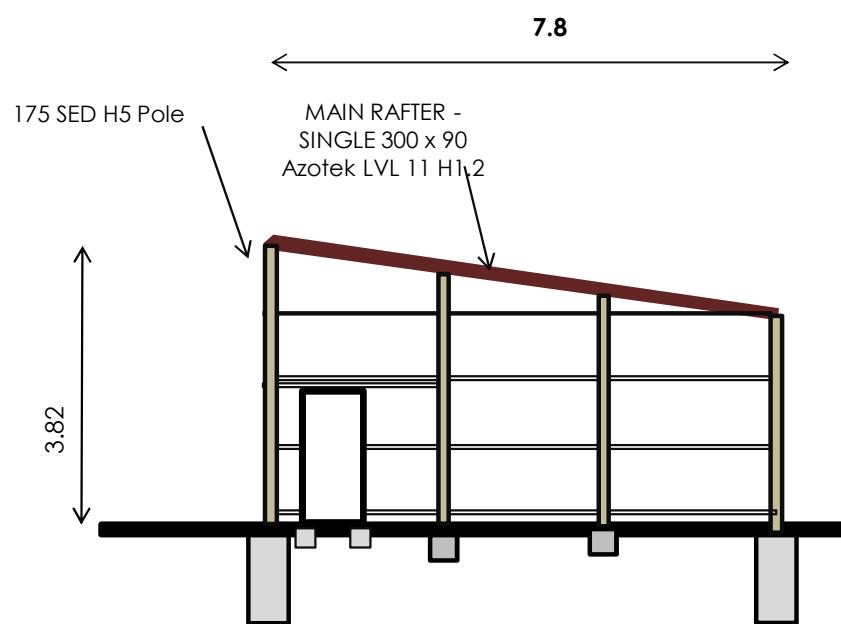
Client: Matt Patrick
Project: Garage/lean to
 395 Te Kopi Road, Masterton


Ref No.: HA108050
Date: 5/08/19
SCL Ref: 2366-7905

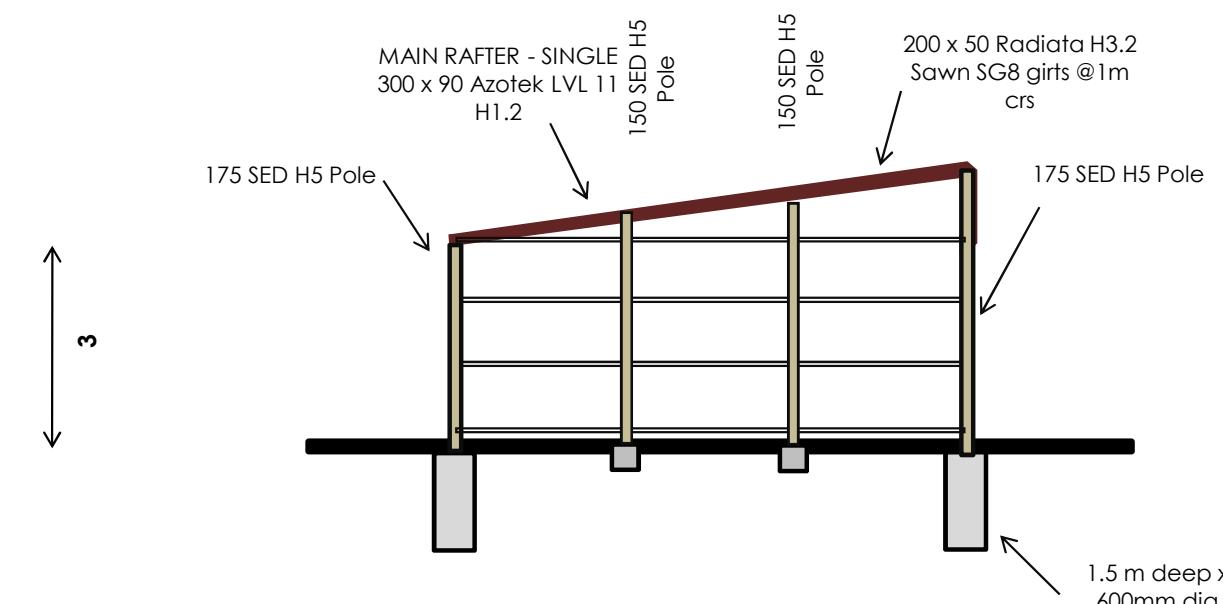
TIMBERSPAN
 STRONG TIMBER BUILDINGS

omajineer Structural Concepts

REAR WALL FRAMING



Client: Matt Patrick
Project: Garage/lean to
395 Te Kopi Road, Masterton


Ref No.: HA108050
Date: 5-Aug-19
SCL Ref: 2366-7905

TIMBER SPAN
STRONG TIMBER BUILDINGS

emajineer
Structural Concepts

LH END WALL FRAMING ELEVATION

RH END WALL FRAMING ELEVATION